MODERN METROLOGY

WORKS BY THE SAME AUTHOR.

AID TO SURVEY PRACTICE. 385 pp. Crown extra, 12s. 6 d. (Lockwood, r880.) Instruments and Calculations, 70 pp .; Surveying Operations, 66 pp . ; Levelling, 60 pp . ; Setting Out, $93 \mathrm{pp}$. ; Route Surveys, 6i pp. ; Field Records, 35 pp.
HYDRAULIC MANUAL AND STATISTICS. 560 pp . Demy, 28s. (Allen, 1875.) Text, 220 pp.; Working Tables, roo pp.; Hydraulic Statistics, 140 pp. ; Indian Meteorological Statistics, 100 pp .
CANAL AND CULVERT TABLES. 400 pp . Royal, 28 s. (Allen, 1878.) Text, 48 pp ; Tables, 328 pp. ; Examples, 24 pp.
TRANSLATION OF KUTTER'S 'NEW FORMULA FOR VELOCITY.' 23 ppp . Demy, 125.6 d . (Spon, 1876.) Text, 95 pp . ; Kutter's Velocity Tables in Metric Measures, $\mathbf{I} 36 \mathrm{pp}$.

POCKET LOGARITHMS, AND OTHER TABLES. ${ }^{150}$ pp. 18mo. 5s. (Allen, x380.) Text and Examples, 32 pp.; Tables, 117 pp .
ACCENTED FOUR-FIGURE LOGARITHMS. 250 pp. Crown extra, gs. (Allen, 188r.) For Numbers and Trigonometrical Ratios, with Tables for Correcting Altitudes and Lunar Distances.
ACCENTED FIVE-FIGURE LOGARITHMS. 300 pp. Super royal, 16s. (Allen, 188r.) For Numbers, 200 pp. For Trigonometrical Ratios to the Centesimal Division of the Degree, 90 pp . Text \&c., 10 pp .

Ready for Press.

CONSTRUCTIVE MECHANICS. Engineering Principies and Solutions, with a Summary of the Calculus for Practical Purposes.

MODERN METROLOGY

A MANUAL OF THE
\section*{METRICAL UNITS AND SYSTEMS}

of the

PRESENT CENTURY

WITH AN APPENDIX CONTAINING A PROPOSED ENGLISH SYSTEM

BY

LOWIS D'A. JACKSON

author of 'aid to survey-practice' 'hydraulic manual and statistics' 'Canal and culvert tables' etc.

$$
41694
$$

LONDON
CROSBY LOCKWOOD AND CO. 7 STATIONERS'HALL COURT, LUDGATE HILL 1882

Chemist.
12
8% क 3^{2}
a

LONDON : PRINTED BY
SPOTTISWOODE AND CO., NEW-STREET SQUARE

- AND PARLIAMENT STREET

TO THE

RIGHT HONOURABLE

WILLIAM EWART GLADSTONE

THESE LABOURS ARE INSCRIBED

In RECOGNITION OF THE INTEREST TAKEN BY HIM IN THE IMPROVEMENT OF ENGLISH WEIGHTS AND MEASURES

INTRODUCTION.

Measures, as exemplified in the pecks, pots and pounds of the tradesman, may at the onset appear uninviting and uninteresting from the fact of their being generally associated with small shopping transactions. The subject, however, even in the smallest of its bearings, cannot beviewed with indifference.

Among almost all nations, an adherence to the customary measures of the people is generally a deep-rooted sentiment much akin to conformity to habitual forms of religious ceremony, old politicalinst itutions, and ancient modes of linguistic expression. Such conservatism is a habit of the masses, including preponderating numbers. of unreflecting and narrow-minded persons; while the opposite phase of thought and tendency, progress and improvement, constitute the aim of the more enlightened and the scientific; the balance between the two is much affected by temporary circumstances, and controlled by fitful impulse. Change is sometimes considered harassing, sometimes eagerly welcomed. Any important alteration in the measures of a country cannot be unattended with some difficulty; while the adoption of foreign measures, and the abolition of the indigenous measures,
nearly amounts to a national disgrace from the implied admission that the nation cannot devise or produce a sufficiently good system for itself.

Measures are essentially national, and it is in this respect that they are chiefly of interest.

There is, perhaps, no more rapid and certain mode of tracing the influence of a race than through the adoption of its measures. Language may vary in districts, in families, and in individuals; habits and customs, even modes of construction and of destruction, may follow diverse lines within very circumscribed areas; but measures take the most condensed form in which a nation can indicate its peculiarity.

A collection of the measures of all nations constitutes in one form an annal of the world, and metrology in the same way corresponds to history; in this respect measures become scientifically interesting.

Ancient metrology has its votaries, some that like it for itself, others that explore it for its scientific interest as the foundation of modern and of present measures, and as throwing light on probable future development. Useful and indispensable though it may be in some respects, it is yet too antiquarian and frequently too vague to command many followers.

Modern metrology, on the contrary, forms a branch of ordinary education, and supplies part of the stock of general knowledge that every well-informed man should possess. If it is incumbent on the masses that their children should learn at school the measures, or as they are commonly termed, the weights ${ }^{1}$ and measures, of

[^0]their native country, it is no less requisite that the more highly educated should have some knowledge of the measures of all countries.

Books on the subject are few, and frequently have the defects of being unnecessarily and repulsively dry, as well as highly inaccurate and incorrect. As regards dryness, probably nothing can equal the repulsiveness of a column or set of measures unaccompanied by any explanation of the purposes, history, or mode of formation or subdivision; perhaps, however, a column of difficult words in a child's spelling-book, without any account of their derivations, or illustration of their meanings, forms an analogous case. With reference to incorrectness, this may be of two kinds, one due to simple errors and clerical mistakes both on the part of the author and of the printer: the other due to mistaken principles. The revision and seeing through press of such books constitutes a formidable undertaking, which should properly involve working-out and re-checking every figure, a labour most often neglected not only on account of the toil, but because press-corrections are exceedingly expensive and charged on elastic principles; while the general public estimate the value of a book less according to the value of its information and the labour involved in its production, than by its weight of paper, size of type, and other small details.
speak of a measure of weight, or unit of weight, as an actual weight. A measure of anything, whether of power, elasticity, heat, weight or distance, should never be confounded either with the amount or with the quality estimated. The clerk that refers in anecdote to a cow as 'my gentleman' is not more illogical or inaccurate than those that adopt the term weight to represent a unit or a measure of weight.

The errors due to mistaken principles generally may be ascribed to the following causes.

The values of units of measure are sometimes compiled from the first available book, regardless of the probable time, mode, or circumstances under which the comparison of the standard unit was effected, and the number of figures to which the value may be safely relied on. If, as is often the case, the original comparison was made in foreign units, the multiples of a converted valuc are then liable to an error amounting to a multiple of the primary error in conversion. Next, as a great number of comparisons have been made with French units at 0° Centigrade in vacuo, and as the English standard commercial temperature is now 62° Fahrenheit, and was formerly 30° Fahrenheit, in air at $30^{\prime \prime}$ barometer, allowances for the change of temperature and displacement of air are almost invariably quite neglected; this makes a serious difference in the values of large multiples or units, and may vitiate many pages of units, or even a whole book.

These defects have, as far as possible, been avoided in this work ; and, as a rule, English books on the subject have not been made use of. The allowances for temperature, pressure, and air-displacement are the same as in the conversion tables for English and French measures attached to the translation of Kutter's work on velocity-formulæ (London, Spon, 1876), and are very nearly identical with those published later by the Warden of the Standards in the Report for 1872, issued a few years afterwards.

The principal sources of reference and compilation
here utilised are the whole series of Reports of the Warden of the Standards from 1866 to 1878 , and Doursther's 'Dictionnaire des Poids et Mesures,' Bruxelles, i840, a book long out of print, in which sometimes the French values and sometimes the English values arecorrect; also such information as was collected by myself in Europe, Asia, Africa and America during travel and intervals of professional work, and that due to the kind aid of foreign consulates and embassies in England. In one or two instances a small amount of information may have been taken from sources now forgotten. Some of the Persian measures in Clarke's Persian Manual (London, Allen, 1875), and some of the Japanese and Chinese measures in Browne's 'Merchant's. Handbook,' were used at the suggestion of the corresponding embassies; some stray information may also have been gleaned from books of travel.

But, under all circumstances, the whole of the values adopted in this book have been worked out afresh from the basic units believed to be the most correct available. Any values of the multiples of these basic units will necessarily hold with exactitude to the last figure, after allowing for augmentation, only in the original series in which the comparison was made ; sometimes, in the: French values, sometimes in the English values.

As regards the measures only used actually at the: present day, it would be perfectly impossible to distinguish them authoritatively from others that have only lately become nominally obsolete. It may be noticed that legal enactments do not rapidly sweep away old measures, which are liable to survive to a very wide:
extent under all circumstances, in spite of comminatory fine and imprisonment. Old measures, too, that may even have become practically as well as legally obsolete, so frequently survive in the language and books of a people, that it becomes convenient to have their values recorded for reference in a book of this sort. The whole of the measures of the present century are therefore included in this collection, excepting the old French and Belgian units, which would require an extra volume; thus, even when any nation has already both adopted French measures and abolished its own by legal enactment, the old measures will be found in the book, and the French system can be referred to in order to obtain the new measures.

The dates of the legal adoption of French measures by various nations will be found in the text (page 14a); but those of their actual employment in internal trade to the exclusion of national measures cannot be determined with certainty.

It is a marked feature in the tables of this book that not only are the English commercial or ordinary equivalents of measures given, but also the English scientific equivalents ; and this comparative novelty needs special explanation.

The basis of the English scientific system was laid down by the Warden of the Standards in his work ' On the Science of Weighing and Measuring' (London, Macmillan, 1877), where he explains that the English scientific values of foreign units are those taken at 32° Fahrenheit in vacuo ; and thus form a segregated set of values. Mr. Miller also constructed in 1859 the new English unit
of weight, the foot-weight or talent, which is the weight of an English cubic foot of water. These constituted an admirable basis for developing a complete English scientific system, of which full advantage has been taken throughout this work.

Of the necessity for some such complete system there can be no doubt. English commercial measures, being defective in systematisation, are ill-suited to professional, technical, and scientific purposes, while French measures are utterly out of all accord both with English measures and modes and with all other naturally developed systems ; hence neither of them can conveniently answer the purposes of an English scientific or professional man, apart from the undesirability of borrowing foreign measures. An English scientific system must, in order to suit all such purposes, be necessarily either strictly decimal, or mixedly decimal, centesimal and millesimal, as argued in the chapter devoted to the subject, and be in some accord also with ordinary English trade-units.

The complete English scientific system, drawn up on these principles, is given in Part II. chapter vi. with attached conversion tables. It has also been used throughout the whole of the tables as a useful and convenient medium for comparing and computing values of foreign units, without the intervention of French measures.

It is also to a certain extent parallel with the French system, that is, as regards standard temperatures and pressure, and thus forms a convenient medium of calculation for foreigners, to whom English commercial measures are a bugbear of incongruity.

It may also be mentioned, such a permissive professional and scientific system cannot cause any alarm to English shopkeepers that have lately invested in new scales and weights.

Had any other equally perfect and convenient English scientific system been either available or practicable, it would have been adopted in preference; as the need of some such system in a work of this kind was absolutely pressing.

The general arrangement of this book is in two parts. Part I. can be referred to for the value of any single or detached unit of measure used in the present century; in this case it is solely necessary to know beforehand whether the unit is one of length, of surface, of cubicity or capacity, or of weight ; it can then be looked for in the corresponding collection and chapter. Part II. includes merely the more common national systems and collections of measures, that are most frequently required; these are arranged in single pages, so that the whole of the measures of any such nation may be seen at a glance.

The second Part hence involves some repetition of portions of the first Part ; but the arrangement is more suited to rapid reference, and the values of the units are carried to a greater number of figures.

The book has been enlarged by about one-third during its passage through the press, with the object of rendering it more complete than was originally intended.
L. D'A. J.

CONTENTS.

PAGEIntroduction
Introduction i
PART I.-METRICAL UNITS.

CHAPTER I.

PRIMITIVE MEASURES AND THEIR DEVELOPMENT.

Primitive, personal and natural units-Reduction to standard-Royal, sacred and double units-Special units and segregated systemsDynastic changes of unit-Stages of development--Reorganisa-tions-Modern spread of French measures

CHAPTER II.

LINEAR MEASURES.

Classification-The foot, its origin, and subdivision-The subdivision of the inch, and the wire gauge-The cubit, modern cubits and their subdivision-The yard and double ell, their derivation and subdivision-The fathom and the canna-The rod and the pole -The rope or cord-The chain-The acre-side-Itinerary measures, the mile, league and stage-Geographical and nautical itinerary measures-Commercial and scientific values of units
TABLES OF MEASURES OF LENGTH.
Feet, general and national units, local and former units . . . $5 \mathbf{I}$
Cubits, ells, bracci, piks, hāth, hasta, \&c. 55
Double cubits, yards, stab, vara, zar', gaz, haila 60
Paces $\mathbf{6 2}$

CHAPTER IV.

 CUBIC MEASURES.Formation-Their relation to capacity units-Their subdivisionSmall English units, their comparison with capacity units, and units of weight-Large English units, their comparison with capacity units, and units of weight-Foreign units, their comparison with capacity units.109.

TABLES OF CUBIC MEASURES.
Cubic inches, cubic tithes, and fluid ounces 127
Cubic feet and cubic yards 128.
Fuel units, stacks, cords, \&c.-Tons of bulk 132
Cubic fathoms and cubic rods 134
CHAPTER V.
MEASURES OF CAPACITY.

Modes of formation-Transitional or doubtful units-English units, comparison of large and small standard units-Nominal liquid measures-Foreign measures of capacity-Dry measures-Large and nominal dry measures-Barrels used in the Baltic trade
tables of liquid measures of capacity.
Small liquid measures, corresponding to the quart Page
Intermediate liquid measures, corresponding to the gallon . . . 164
Large liquid measures, corresponding to the runlet 168
Nominal liquid measures ; barrels, and loads 170
Hogsheads, puncheons ; butts, pipes, tuns-The brew . . . 173
tables of dry measures of capacity.
Ordinary dry measures, corresponding to the bushel . . . 179
Large dry measures, corresponding to the quarter 185
Nominal dry measures, grain-lasts and coyangs 190

CHAPTER VI.
 measures of weight.

Formerseparate systems, troy, monetary, and medicinal-Old English
units-Old German units-Modes of subdivision-The origin of
pounds, \&c.-Old Arab units-Standard units of various nations
—Large units, stones, centals, man, kandi, pikul-Tons and
lasts $9 \mathbf{I}$
tables of measures of weight.
Commercial pounds, rotal and ching 2 II
Double pounds, oka, ser 22I
Triple pounds ; the vis and the catti-utan 223
Stones, liespfund, pud, small man, and dharri 223
Quarters, arrobas and the kachcha man 225
The foot weight or talent-Miscellaneous English units-Barrels . 227
Hundredweights and analogous units 228
Loads, kandi, and bahar 233
Tons and lasts of heavy goods 236
Miscellaneous lasts 238

PART II.-METRICAL SYSTEMS.

CHAPTER I.

MODES OF SUBDIVISION.
Systematisation of measures-Original methods-The subdivision of measures, decimal, sexagesimal, duodecimal, binary septimalCombined modes of subdivision-Complications resulting from heterogeneous modes
CHAPTER II.
EUROPEAN COMMERCIAL SYSTEMS.
Comparison of the English, Danish, Swedish and Prussian systems - Defects of the English system-Austro-Hungarian system- Russian Imperial system-French metric system-Modified metric systems-French ' mesures usuelles '-Baden, Hesse and Swiss systems-Old measures-Spanish and Portuguese systems -Greek and Turkish measures-Distinctions between European, Moslem and Pagan systems 257
TABLES OF EUROPEAN COMMERCIAL SYSTEMS.
Early English measures. 282
Present English system with conversion tables 284
Russian, Danish, Norwegian, and Swedish systems 290
North German systems 294
South German systems 305
Spanish and Portuguese 309
Old measures of Paris, Amsterdam, Brussels, Florence, and Venice 312
Metric systems-Present French-Former French-Baden, Hessian, and Swiss 317
CHAPTER III.
COLLECTIONS OF ORIENTAL MEASURES.
General classification-Historic causes of the separation of Moslem from Christian measures-Peculiarities of Oriental measures of various kinds 326
tables of oriental collections of measures.
Ottoman 338
Greek 339
Syrian 340
Arab 341
Egyptian and Abyssinian 341
Berber, Tunisian, and Moorish 343
Algerine 344
Persian 345
North Indian 346
CHAPTER IV.
COLLECTIONS OF PAGAN MEASURES.
PAGE
Classification-Primitive indigenous systems-Comparison of Pagan with English measures-Peculiarities of Pagan units and systems -The values of some African units 347
TABLES OF PAGAN COLLECTIONS OF MEASURES.
South Indian 355
Burmese 356
Thaï (or Siamese) 357
Anam 358
Malacca 359
Sumatra 360
Java, \&c., and Manila 361
China 362
Japan 363
Indigenous African 364
CHAPTER V.
MEDICINAL AND LAPIDARIES' SYSTEMS.
Medicinal and monetary units-The medicinal ounce-Its subdivi- sion-Metric units-Remedy for English incongruity - The abolition of separate medicinal systems--Lapidaries' systems 365
tables of uedicinal systems 372
tables of lapidaries' and jewellers' units. 377
CHAPTER VI.
SCIENTIFIC SYSTEMS.
Their peculiarities and desiderata-Ancient scientific systems, Chal- dæan, Indian, and Pyramidal-The French metric system -The English scientific system - The English decimal scientific series -Other scientific systems - Prussian, Danish, Swedish, Neapoli- tan and Florentine 379
Tables of French and English scientific systems, and conversion tables for the same 406
Compound units 414
Tables of moneys of account 416
Remarks on complete decimalisation PAGE
418
Pressure units-Irrigation units-Water supply units--Power units and units of work-Thermal and electro-magnetic units 420
Tables of English and French compound units, on the commercial and on the scientific scale 429
Tables of constants, as used in connection with standards-Tempera- tures-Densities and expansion 431
Weight of air-Displacement-Weight of water 433
Allowance in English and French measure 435APPENDIX I.
Proposed English Commercial System 439
APPENDIX II.
The Actuad and the Proposed Standard Temperature and Pressure 443

ERRORS AND OMISSIONS.

Page 42, line 28 , for 2,000 read 2000
,, 56 ,, 3 I , for foot, and read for land,
,, $62,, 30$, for $1 \cdot 15223$ read $\mathrm{I} \cdot 85223$
,, 67 ,, in, add:
Turkey. Agasha $=3$ berri. $3 \cdot 1084|166408| 5 \cdot 0010$
96 ,, 28 , for $17 \cdot 628 \mathrm{read} 7 \cdot 628$
96 ,, 29, for $1 \cdot 929$ read $11 \cdot 929$
IO2 ,, 5, for ahn read ålen
103 ,, 25, for thaoc read thuoc
II4 ,, io, for aliquot or multiple read aliquot-multiple
137 ," 3, for parrah read parah
, 145 ,, 27, for medical read medicinal
I5I ,, 18, for into three classes read under three heads
193 ,, 12, for them read it
231 ,, 12, for Manilla read Manila
232 ,, 37, twice for Manilla read Manila
260 ,, 2, read Troy weight apart from Apothecaries' weight is legally abolished
286 ,, 16 , for 25.2773350 read $25 \cdot 2775033$
289 ,, Cwts. into quintals, for 4.572254 read 4.572214
373 ,, 20, after customary add for medicinal purposes
377 ,, 22, for mardo read marco
416 ,, 35, for centimes read centesimi
418,16 , for money account read money of account
448 ,, 24, for also read now

MODERN METROLOGY.

PART I.-METRICAL UNITS.

CHAPTER I.

PRIMITIVE MEASURES and THEIR DEVELOPMENT.

Although antiquarian research and archaic curiosity are by no means of direct importance in a book that deals with the 'Units and Systems of Measure' of the present century, and occupies itself about their future development, yet the indirect bearing that the experience of ages has produced on the present, and may produce on the future, certainly deserves some notice and consideration. Not only so, but the past development of the apparently very heterogeneous collection of measures of all sorts, that are now and have been in use throughout the world, affords indication of natural transformation suited to the progressive wants of communities, when primitive and detached, when strong and cosmopolitan, when dismembered and sunk in darkness, or when passing through the various progressive stages either of com-
mercial progress or of enlightenment, civilisation and scientific development. This natural transformation, based on rational requirements, is doubtless much obscured in the chaos of measures, of which many are due to unintentional departure from original or from local uniformity ; it existed, nevertheless.

In primitive times, and among nations in a primitive state, there were probably no very definite measures of surface or of capacity like those now used in Europe, but only measures of length and of weight. The measures of length corresponding to the side of a square surface were sufficient for denoting small areas; while large areas were indicated by natural limits or boundaries, such as rivers, watercourses, the edges of forest, marsh, hill l-skirts, borders of natural pasture, or of arable land; these, in addition to occasional boundary stones or pillars, answered the requirements of the period. Measures of capacity were comparatively rare, almost all commercial and monetary transactions were determined by weight ; measures of weight, either small or large, appear to have always been in existence ; of this there is ample evidence in the customs of Oriental races to this day. In India, and partly in China, grain, oil, and every commodity is sold by weight, while many of the measures of capacity of the Ottoman, as well as those of the East-Asiatic races, are really only transformed measures of weight; thus a very large number of persons exist in the world to whom a measure of capacity is an unknown and apparently a most useless and cumbrous contrivance.

The primitive measures of length were the grain of corn placed lengthwise, the finger-breadth or digit, the palm-breadth, the span, the foot-length, the cubit (from
the elbow to the finger-tip, and sometimes only to the roots of the finger), the double cubit, the gird or girdle, the fathom (comprised in the reach of the two arms to their fullest extent), the step, the pace or pair of steps, the local acreside of 80 or 100 cubits, or some simple multiple of a small measure, the itinerary measure or mile of 1000 paces, of 4000 cubits, or some convenient multiple of the pace or cubit, and the itinerary distances expressed by the hour's march, and the day's journey. The primitive measures of weight were the weights of various grains of corn, millet, rice, barley, wheat, gunj or abrus (more especially the last on account of their wonderful uniformity in weight) ; the weights of the current pieces of money locally used; the weight of a certain number of small shells of a sort that happened to be tolerably uniform in size and appearance ; the weight of certain stones bearing some certain proportion to that of a number of coins, shells, or grains; the weight of water, oil, wine, rice, wheat or commonlyused grain contained in a temporarily-formed local cubic foot, or in a cubic cubit ; the weight of a man (a rather variable quantity), and the load of a man, or of a packanimal, ass, mule, bullock, or camel.

Such primitive measures in their original condition may now be considered exceedingly variable, but werecertainly quite as well suited to the wants of a primitive epoch as modern measures are to modern requirements; for under ordinary circumstances the common commodities of merchandise, grain, oil, \&c., were of low value, and when prices were exceptionally high the variation in price was out of all proportion to the fluctuation of unit of measure. The habits of Indian grain-merchants at the present time show an indifference
about units of weight that throws light on the habits of the past in this respect. These merchants, avaricious though they are, will sometimes, on being pressed about their stones and weights being incorrect, volunteer to let one use any weight shown or mentioned, and simply offer a guessed price to suit the case. They can well afford this, for they have the power to get up fictitious famines in districts, and actually do so under the beneficent patronage of the free-trade doctrines of the British Government, that does not interfere with the market-rate, compete with ordinary trade, or aid the helpless native to co-operate against his oppressors. Under such circumstances it is evident the price is everything, while the unit of measure is comparatively immaterial. The same principle would also hold in trade transactions in which measures of length were used. They may now be termed rough measures, but they were amply exact enough. The weight of the pieces of money, whether silver, gold, or electrum-a mixture of the two-were certainly of more importance ; monetary weight, in periods when monetary tokens werc unknown, or regarded simply as medals, was necessarily the most important part of a system of measures; but even then estimation by apparent weight in the hand, or recognition by some peculiarity of form or of mark, was generally sufficient for this purpose, for this was similarly a consideration far inferior to the genuineness, purity, or quality of the precious metal ; a point on which the judgment of any ordinary semi-savage is wonderfully correct.

A second stage in the development of measures is denoted by the demand for greater exactitude ; the personal and primitive measures then requiring some
degree of fixity, the personal measures of some chief, king, patriarch, or high-priest then became reduced to actual standards, and were introduced into the temples, the markets, the judgment halls and public buildings, and the people could refer to these for comparison.

In this stage, a cubit was not the cubit of any individual, but had become a standard unit; while the cubit of the individual was merely useful as affording an approximation to the standard unit. Cubic measures, and units of weight based on cubic measure, in preference to arbitrary units, then became possible.

Such standards were few in number, perhaps two of length, and two of weight, one large and one small; while the multiples and submultiples were mere matters of calculation, arrived at in accordance with the habits of thought of the people and their chiefs or priesthood. Some nations, especially the more primitive early Egyptians and the Chinese, counted and thought decimally; others, as the Assyrians, by sixties and sixtieths or shekels ; the Romans by twelfths, inches or ounces of land-measure, capacity, length and weight ; while the races that obtained the ascendency in modern ages-the Teuton in Europe, and the higher castes or races in India-adhered generally to binary subdivision in their commercial measures, halves, quarters, eighths, and sixteenths, and arranged their multiples so as to admit of it. The subject of systematised modes of subdivision will be treated in another chapter. The natural mode of subdivision was, apart from these methods of counting, based on the natural proportions that the natural units of length, or personal measures, bore to each other.

Taking the digit or finger-breadth as the smallest
common personal unit of length, the proportions of the others to it probably followed nearly the accompanying scale-

I Palm	$=$	4 digits
I Span	$=12$	
I Foot	$=16$	
I Cubit	$=24$	
I Step	$=40$	
I Pace	$=80$	
I Fathom	$=96$	
I Rod	$=160$	

These proportions held generally ; the inch or twelfth of a foot, the yard, whether a double cubit, a half-fathom or an actual girdle, and the rod, were probably less ancient units, about which some doubt may exist ; but it would be futile to avoid the indication afforded by these proportions, the strong tendency to the convenience of binary and fractional subdivision; while on the other side, the habits of people of a primitive race, aided in counting by the presence of their ten fingers, would naturally tend to the adoption of decimal multiples, as more easily counted.

Apart from such simple or natural measures for ordinary commercial uses, there were also royal measures, and sacred measures, almost invariably larger than the corresponding natural measures. Among coarse uncivilised and ignorant people, size or bulk meant power; an enormous Apis, a heavy bull, conveyed awe ; a Saul, being a head and shoulders above the crowd, was elected king and commander-in-chief to manage the war against the Philistines ; a celebrated Hindu deity, whose worshippers are millions, is represented by
the figure of a very replete man, with an enormous stomach-quantity then expressed grandeur. Correspondingly also, a large gift or tax paid to the king, or tithe to a priest, conveyed with it an idea of dignity, of sanctity, of reverence, or of special respect. As, also, such increased measures were of considerable advantage to the king or priest, royal and sacred measures were a special institution, involving a separate set of standards, at least for some considerable time before merging into a general combination or into application to separate nationalities or communities.

Besides these temporarily special standard units, there is on record much evidence to the effect that in some cases the units were doubled at pleasure under some monarchs. The inscriptions on the well-known Babylonian and Assyrian bronze and stone lion and duck weights in the British Museum, and the verifications of Mr. Chisholm, show that the manáh or pound under Shalmaneser and some other emperors was double of that under Tiglathpileser, Nebo-vulibar, Dungi, and Irba-merodach. Double weight, double tribute, and double rent or tax are by no means unknown Oriental arrangements. In years of plenty, a double rent for land is frequently now paid without demur, on the principle that remission accompanies a year of scarcity; and it is probable that the alteration of the standard weight was a mode of altering taxation without the necessity for altering accounts or issuing edicts that might redound to the advantage rather of the collector than of the king. Fixity of measure was not in those times an admitted necessary principle to the extent of being binding on the government of the country ; even now, in semi-Oriental countries, government paper money is often forced by edict to be accepted
at a very false value, and deemed a justifiable financial proceeding.

Another cause of variety in measure was the tendency of various trades to adopt units of their own, an evident imitation by the tradesmen of the method adopted by the king and the high priest. A single system of commercial measures was thus not only supplemented by royal, sacred, and double measures, but was practically broken up into a mass of special systems ; such as a monetary system, a grain and oil or common commercial system, a jeweller's and a precious-stone system, a druggist's ; artisans' systems for a large number of crafts, carpentry, masonry, and so on, and finally scientific, astronomical, and geodetic systems. Now, though all such systems doubtless ramified from a single comprehensive system of which they were parts, yet local departure from standard values, engrafted on results. in all these sub-systems, inevitably led to complexity.

The overthrow of a dynasty, the influx of a new governing class, might in those ages have produced as much alteration in the measures ${ }^{1}$ as now occurs in the names of the streets of Paris under similar conditions; though conquests involving imperialism effected more extended uniformity. This advantage, great as it may appear to persons living in an age of international commerce and rapid communications, was of far less commercial importance in those days ; and although it must certainly have been the means of sweeping away a great quantity of local measures, it cannot be assumed that the measures of the conquering were necessarily better than those of the conquered race.

All this variety of standard and modification of units

[^1]culminating in extreme confusion of measure, naturally necessitated a complete reorganisation, or a fresh departure, after recurrent periods.

In such a development the following stages may be clearly traced :-
I. Primitive personal measures.
2. Primitive standard units, and original systems.
3. Combined and expanded series of measures of great commercial utility.
4. Intricate, confused, and debased measures, heterogeneous in arrangement.
5. Reorganised systems of measures.

After this, the reorganised measures then seem to take the place of primitive standard measures, and the development then repeats itself in the way that history, or rather historic development, invariably does.

The first of these reorganisations (of the measures of the civilised world) of which there is full historic record was the Phileterian system, of the Ptolemaic age, ingeniously devised to suit all purposes in commercial and monetary transactions.

At a later period, there was the Olympic system of Greece, based on the Olympic cubit and Olympic talent, which were identical with the ancient Egyptian natural cubit and the Græco-Egyptian talent; the subdivision adopted in this system had many advantages as regards simplicity, as well as practical utility, besides that of a rigid adherence to such ancient and correct standard units as were retained.

The Roman reorganisation of measures was a combination of the Egyptian and the Greek modified units, arranged under a fresh system, and a mode of duodecimal subdivision of certain selected primary units of
length, surface, capacity, and weight, which was suited to Roman forms of thought and calculation.

Among more modern reorganisations were that of Charlemagne, about 780 A.D., better known as the French poids de marc system, or pile de Charlemagne (the weights of which are said to have been based on the Arab yusdruman pound of Harun al Rashid) ; the Nuremberg and the Cöln marc systems, retained for medicinal and for monetary measures of weight until the present age ; and the Spanish marc system.

The Anglo-Saxon system, with its Saxon gird or yard, its moneyer's and its marchant's pounds (also having some affinity to the Continental marc), its Saxon acre, and the Roman mile of 5000 Saxon feet engrafted on the system, seems also to have been a complete and wellarranged reorganisation, suited to the period and the wants of the people, at the close of the Heptarchy.

A Scandinavian or a Danish system, about which little information is available, was probably a reorganisation of about the same period.

The Mughal system of Akbar the Great, about 1570 , comprised a complete set of weights and measures rearranged and reorganised from the ancient and surviving Indian measures.

The Russian system of measures, reorganised at the command of Peter the Great, were so arranged that the Russian foot should be exactly identical with the English foot; and the tschetwerik and vedro, the measures of capacity, were, like those of the English, rearranged in accordance with the measure of weight by comparison with distilled water.

In 1795, the whole of the French measures having arrived at an extreme state of heterogeneous confusion, a
new system was adopted, in preference to a reorganisation : a modified half-toise, named a mètre, was adopted as the basic standard unit of length, its length being determined on geodetic considerations, or on an estimated value of the meridional arc passing through Paris then believed to be correct. The system based on this single unit, termed the metric system, was as rigidly decimal as the primitive Chinese or the ancient Egyptian systems, and thus possessed all the advantages of a primitive system, while it was also in strict accordance with the numerical modes of calculation universally adopted, in which the digital system is decimal. The measures of the Netherlands, Greece, and some Italian States being also very heterogeneous and confused, the French metric system was also adopted in those countries at a very early date, to the exclusion of the old measures, and in preference to a reorganisation.

In 1824, the English measures, derived from the Anglo-Saxon system, having become debased and confused from the successive introduction of French measures, the Troy pound, Avoirdupois pound, and French ell, and from a variety of local measures, the whole collection of measures was reorganised, local measures were abolished, and a complete imperial system, based on the greater part of the preferable existing measures, was drawn up with a certain amount of fixity and certainty, and established by law.

In England, in 1869, a new standard-unit of weight was constructed and legalised, the weight of a cubic foot of distilled water represented in commercial weight by 62.32 I lbs. The corresponding scientific unit, which corresponds to the ancient Greek talent, and may be termed an English talent, is of extreme importance from
its enabling English scientific and technical calculations: to be made and recorded in a purely decimal system, based on the English foot, which possesses all the advantages of the French system, while it is superior to it in its employing a natural unit in common use. The only standard-units necessary in this English scientific. system are-

The foot, as the unit of length ;
The square foot, as the unit of surface ;
The cubic foot, as the unit of capacity;
The foot-weight, or talent, as the unit of weight-
while the multiples and submultiples are purely decimal in accordance with ordinary arithmetical notation.

Most of the subsidiary units of this system are wellknown measures ; the facts, that technical, professional, and scientific men have long utilised the coincidence that the Avoirdupois ounce is very nearly one-thousandth of the foot-weight, and that the fluid-ounce has been long used as a measure of capacity or cubic measure corresponding to the ounce-weight, combine to render such a decimal system convenient. The completion of it worked out throughout this book, and fully explained in the chapter on Scientific Systems, may render its use and application more easy and convenient.

The sets of units are these:-
In length :- the foot, the rod of ro feet, the chain of roo feet (Ramsden's), the cable of io chains, and the league of 100 chains, or 10000 feet, which is equal to two old London miles. In surface, the square foot, the square rod of 100 square feet, the square chain of 100 square rods, the square cable or century (an old Roman term once well known in England) of Ioo square chains,
and the square league of 100 centuries. In weight and cubic measure the two series correspond thus:-

1 rod-weight $=1000$ foot-weight
I foot-weight $=1000$ decimal oz.
1 decimal oz. $=1000$ mils
$1 \mathrm{mil}=1000$ doits

```
I cubic rod = 1000 cubic feet
I cubic foot = rooo fluid-oz.
I fluid-oz. = 1000 fluid mils
I fluid mil = 1000 fluid doits
```

The term fluid-ounce has been retained in preference to cubic ounce, cubic decimal inch, or cubic thumb, for the sake of adherence to well-known terms, and because every new term seems a new difficulty to those adopting it. The units themselves cover the whole range of ordinary measures for technical purposes.

A corresponding system based on the inch, including the square inch, cubic inch, and inch-weight, and another based on the yard, including the square yard, cubic yard, and yard-weight, would also be possible, either as detached and purely decimal systems, or in combination with the others; but would be far less convenient.

The most recent improvement in the English commercial system of measures, declared by Act in 1878, but not yet practically-that is, entirely-effected, is its simplification through the abolition of separate systems of Troy weight and Apothecaries' weight, and consequent reduction of the whole of the commercial weights to a single system.

During a period from about 1859 to the present time, the metric system has been permissively adopted by almost all civilised nations, in addition to the commercial measures of these nations; thus avoiding the disadvantage and inconvenience inseparable from the rejection of the national measures in common use.

The dates of these permissive enactments in various countries are as follow:-
Spain, Portugal and Italy 1859

England Act of 1864
United States „ 1866
North German Confederation . . . 1868
Dominion of Canada 1871
Indian Empire, applied only to Officials, Municipalities, and Companies, and solely as regards measures of weight . 187r
Austrian Empire and Switzerland . . 1873
Sweden and Norway 1875
The compulsory employment of the metric system in France dates from a law passed in 1837.

In Portugal, French measures were actually adopted in their entirety by 1864 ; in Spain, the compulsory adoption became effective in 1868.

The re-establishment of the German Empire in 187 I led to the necessity for adopting some single system of measures in place of the very various and heretogeneous measures used in the various States and provinces; and, whether local jealousies prevented the extension of the Prussian; or any other existing commercial system to the whole Empire, or other reasons were more influential, the result was the compulsory and exclusive adoption of the metric system in the German Empire from January I, 1872, and followed by a corresponding change adopted in the Austrian Empire from January I, 1876.

In 1873, the Canadian Government adopted a decimal system of measures based on English units; these units beng the English foot and yard ; the English
avoirdupois pound, its decimal multiples and submultiples, from 100 lbs . down to OOOI lb. ; the English grain, its decimal multiples and submultiples, from 1,000 grains to o.OI grain ; the old English Troy ounce, its decimal multiples and submultiples, from 500 Troy oz. down to 0.00I Troy oz. ; the English cubic foot and its multiples; and the English measures of capacity with their binary subdivision from the bushel to the half-gill.

In colonies, possessions, and dependencies the legal system of measure is generally that of the colonising race or parent-country, but the actual system is practically more often some old system of the parent country, and sometimes a hybrid compromise between old indigenous measures and imported units.

The various typical systems of measure, mentioned as reorganisations in this chapter, will be described in detail in a following part of the book (Part II.).

DATES OF ALTERATIONS IN NATIONAL MEASURES DURING THE PRESENT CENTURY.

Denmark.

1861. Decimal subdivision of the pound.

Sweden and Norway.
1878. French measures adopted by Act of 1875 .

England.
1824. Reorganisation of measures.
1853. Date of the present primary parliamentary standards.
1859. The foot-weight adopted as a unit of weight.
1864. French measures rendered permissive.
1872. New normal standard temperature 62° Fahrenheit exclusively adopted for trade measures.
1878. Readjustment of measures. Abolition of troy-weight.

14b ALTERATIONS IN NATIONAL MEASURES. parti.

France.
1795. Publication of the metric system. Old local measures used till 1812.
1812. Adoption of the mesures usuelles.
1840. Adoption of the simple metric system for commercial purposes.

Germany.

1806. Würtemburg linear measures readjusted.
1807. Baden adopts a modified metric system.
1808. Prussian foot and pound readjusted.
1809. Saxony: Dresden dry measures, and Leipzig weights adopted throughout Saxony.
1810. Darmstadt adopts a modified metric system.
1811. Zollverein units proposed.
1812. Zollverein measures adopted.
1813. French measures permissive. 1872 compulsory.

Netherlands.

1820. French measures adopted with local names.

Belgium.

1836. French denominations of metric measures adopted.

Holland.
1870. French denominations of metric measures adopted.

Austro-Hungary.

1873. French measures permissive. 1876 compulsory.

Russia.
1819. Adjustment of Polish measures on a metric basis.
1826. Readjustment of the Russian Imperial system.
1831. Imperial system adopted in Poland.

Switzerland.

1822. Canton Waadt adopted a modified metric system, Five other cantons partially adopted it.
1823. French measures legally adopted.

CH. I.

Italy.

1803. Lombardo-Venetia adopted French measures.
1804. Naples adopted a geodetic system of measures.
1805. French measures adopted throughout Italy.

Spain.

1859. French measures permissive. 1868 compulsory

Portugal.
1860. French linear units adopted.
1861. French weight units adopted.
1862. French surface units adopted.
1863. French capacity units adopted.

Greece.
1836. French measures adopted with local names, termed Royal measures

Ionian Islands.

1800-1815. Local and Venetian measures in use.
1815-1864. English measures used.
1864. Greek Royal measures adopted.

Europe.
1870. First Conference of the International Standards Commission.

CHAPTER II.

LINEAR MEASURES.

Measures of length may be generally divided into three classes :-
I. Ordinary commercial measures from the smallest unit up to the fathom.
2. Agrarian measures, as the rod, the pole, cord, rope, chain, and acreside.
3. Itinerary measures, as furlongs, miles, leagues, stages, and journeys.

THE FOOT.

The Foot is the most general natural standard unit of length retained throughout the civilised world, and for that reason the most important of the natural units still used. There seems little doubt that it was in some countries, but in very primitive times, a primitive unit like the cubit, while in others it was certainly a secondary unit taken in some proportion to cubits already in use as primary units.

The original foot, from which many of the existing European feet has been remotely derived through successive intermediate changes, was probably the ancient Egyptian and the Olympic foot, equal to twothirds of the natural Egyptian and Olympic cubit ; as
this was the principal foot of the civilised world of ancient times. Its length was nearly i.OI 3 English foot, and it was probably partly based on geodetic considerations, as, in accordance with the sexagesimal systems then in vogue, it holds the following relation to a roughly estimated mean degree of latitude:-

I mean degree $=60$ minutes; i minute $=6000$ feet.
There is, however, an alternative mode of accounting for the derivation. There were several ancient cubits of much greater length than the natural cubit, some of them termed royal cubits; among them was the Hashemic, or later Arab cubit, of great antiquity, as shown by its identity with the ancient Chaldæan cubit of $2 \cdot 10$ English feet; and it is very probable that many of the German ells are merely debased Hashemic cubits, which were halved to form the German and European feet of modern times, and doubled to form the German stab and the large French aune.

It is also possible that the European feet may have been derived from various cubits; but they certainly seem as a rule to be approximations either to halves of royal cubits or to two-thirds of natural cubits of assignable historic origin; and this same principle seems to hold generally throughout the world, for even the ancient Chinese foot of Hoang Ti, of o.888 English foot, is said to have some such connexion.

The foreign names of the foot are :-

German: Fuss, Schuk.
Dutch and Flemish : Voet. Danish and Norwegian : Fod.
Swedish : Fot.

Spanish: pié.
Italian : piede.
French: pied.
Portuguese : pé.
Chinese: Chih.

The values of the feet used since 1800 will be found in the table of equivalents at the end of this section.

The subdivision of the foot.-The Roman subdivisior of the foot into twelfths, or inches, was generally adopted throughout the whole of Europe that fell under Roman sway, and has been retained to the present day ; but in a few provinces and countries, more specially in Belgium, Holland, and parts of France, the inch became the eleventh part of the local foot, possibly with the view of adjusting it to equal the twelfth of some other larger foot ; in a few places also the inch was the tenth of the foot exclusively.

The foot was divided into eleven inches, at the following places:-

Amsterdam.	Boulogne.	Metz.

Anvers.
Aisne.
Ardennes.
Arras.
Bruges.
Brussels.
Beauvais.

Caen. Cambrai. Ghent. Laon. Normandy. Malines. Mézières.

Sedan.
St. Omer.
Soissons.
Tournai.
Vermandois.
Vervins.

The foot was divided into ten inches at the following places:-

Baden.	Liége.	Tongres.
Carlsruhe.	Louvain.	Vaud.
Cassel.	Luxemburg.	Valais.
Darmstadt.	Maestricht.	Würtemberg.
Hanau.	Mons.	-
Hasselt.	Nassau.	Sweden.
Herenthals.	Nivelles (Belg.)	China.
	Namur.	Japan.

At many places in France and the Netherlands the foot was both divided into eleven inches and into ten inches ; and at a few places in France the three modes of subdivision were in use.

The most ancient mode of subdividing the foot was probably decimal, as decimalisation was in vogue in ancient Egypt and in ancient China, as well as in China to the present day; the duodecimal method is more modern, comparatively, but in recent times, both methods have been adopted as suited to various purposes. For geodetical purposes, levelling, and surveying, and all matters in which rapidity and simplicity in calculation is more important than adherence to former measures, the decimal subdivision is more convenient ; while in ironwork, where a large amount of plant and of practical construction is in accordance with the true inch or duodecimal system, the latter mode would be preferred from economic considerations. The subdivision of the foot into thirds, or hands, of four inches each, is a method retained to the present time for horse measurement only.

Another mode of subdividing the foot, which is of great antiquity, is into digits, or finger breadths, which should not be confused with inches; this method is principally applied in Oriental countries to the cubit and double cubit.

The subdivision of the Inch.-The ancient subdivision into thirds, denominated barleycorns, is now generally obsolete; and the subdivision into twelfths or lines is now comparatively rare. The present methods are either binary, into halves, quarters, eighths, and sixteenths, or the decimal subdivision of the inch; the former is almost exclusively adopted in iron-work.

The modern necessity for some smaller unit than either the sixteenth or even the hundredth of an inch has been practically demonstrated by the adoption of various wire-gauges. Although Birmingham wire-gauge was often supposed to be based on some principle of subdivision, or arithmetic or geometric ratio, recent investigation has proved this to be fallacious. The English wire-gauges are purely arbitrary, and even in Birmingham vary greatly according to the maker. In Canada, Stubbs' Birmingham wire-gauge is nearly exclusively adopted; and in France the wire-gauge is in tenths of millimètres. It seems probable that some legal standard wire-gauge will be eventually adopted in England, either in ten-thousandths of a foot, or in thousandths of an inch.

THE CUBIT.

The Cubit has only retained its extreme importance as a primitive unit to the present time in countries and among people that never entirely and exclusively adopted the foot; as some Oriental, Ionian, Asiatic, and African races, that entirely ignore the foot: thus, the pik of Turkey, Arabia, Egypt, Morocco, and of modern Ionian Greece, is a primary unit, so also the hath and hasta, or esto of India, Burma, and of the Malays and Indo-Chinese. Among some semi-Oriental races, or in localities formerly under Oriental sway, the cubit and the foot are both used as distinct units for different purposes, as in Russia, Spain, and Portugal, and their dependencies, where the arsheen and the foot, the codo and the pié, the covado and pé, have been simultaneously employed. In Europe generally, the cubit, as represented by the German ell and the Italian braccio,
was almost exclusively confined to cloth and stuffmeasurement, whenever it was not a multiple of the foot, and hence became a measure of secondary importance. In England the cubit is now merely a nominal halfyard ; and in France, even under the old system of measures, the cubit or coudée was similarly treated as obsolete, although the long French aunes, corresponding to the German stab, were probably double-cubits by origin; while in Spain there were two cubits, one of half-a-yard, and the other of two feet. In India the hāth or cubit is generally equal to the English cubit, and is used and known as well as the gaz or yard : it has been supposed by some to be a debased Egyptian natural cubit ; by others, a correct ancient Hindu hasta, either derived through the Phileterian system or of direct Chaldæan origin.

The Chinese cubit still existing appears not to bear any relation to the principal present Chinese foot, but to an ancient one it bears approximately the same ratio as that shown by the ancient Egyptian cubit to the corresponding foot, namely of three to two.

The cubits of modern times; which alone are treated in this work, consist of the following classes:-
I. The German and Scandinavian ells.
2. The Italian and Levantine bracci.
3. The Spanish and Portuguese codo and covado.
4. The Russian and Turkish arsheens, and the Turkish, Moorish, and Arab piks.
5. The hath, asta, esto, and sok of India and SouthEastern Asia.

Although a great proportion of these measures are nearly obsolete, or have been declared to be so by legislative enactment, they yet happen not to be quite null and void, as measures survive enactments for a consider-
able time, gencrally to nearly an average lifetime, and sometimes longer ; it would hence be a serious omission to neglect mentioning them in a book to which reference might be made in particular cases not of every-day occurrence, and which is intended to deal with the measures of the present century.

The former ells now quite obsolete are those of Flanders and Franche-Comté, or of Belgium and Holland, which varied but slightly, being generally very nearly equal to two and a half local feet, or rather less ; the consideration of these may now be neglected entirely. The German and Scandinavian ells may be divided into two sets, those that are or were exactly equal to two local feet, and those that are independent of any convenient ratio or of any well-defined ratio to the local foot. The values of the former may be obtained by reference to the table of German feet in which those marked with an asterisk merely require doubling to give the value of the local ell ; the latter set in most instances are less important, generally from having been used in less important towns and from being detached measures of limited application ; hence their values are only given in a few special cases. The same remarks apply to the ells of the Austro-Hungarian Empire and of the German cantons of Switzerland.

The English ell, down to the time either of Henry VII. or perhaps of Queen Elizabeth, was always identical with the yard ; the Elizabethan ell of 45 English inches was probably an imported modification of some French aune of 44 larger French inches, and is now happily obsolete: the French aune has also been practically obsolete for some time, owing to the facility of replacing it by the metre. The foreign names
of the ell are: in German and Flemish, elle ; in Dutch, $e l$; in Danish, alen ; and in Swedish, åln.

The Italian bracci, like the Teutonic ells, were mostly used merely for measuring cloth and fabrics of silk and haberdashery, and in a few instances were submultiples of the canna, but in hardly any case have any welldefined ratio to the local foot, when such a foot exists. Sometimes the foot is absent from a local system, or is little used as a submultiple, its place being supplied by the braccio and the canna or pertica, and their submultiples; and this occasional deficiency of the foot, added to the habits and customs of adhering to so-called obsolete measures, renders the braccio not by any means an unknown unit in Italy, at places distant from the principal towns. Its values are hence given in the tables following this chapter. The braccio sometimes is subdivided into 3 , and sometimes into $2 \frac{1}{2}$ or $2 \frac{1}{3}$ palms, the palms being submultiples of the canna; but as a rule the braccio is in practice merely divided into halves or thirds as required. These Italian bracci are entirely distinct from the Spanish and Portuguese braza, braça, and brasada, and the French brasse marine, which are fathoms.

The Spanish codo de ribera, formerly used in the arsenals, was exactly two local feet, while the ordinary codo of commerce was half a vara, or a foot and a half; the Portuguese covado, on the contrary, was not originally a fixed submultiple of the local vara, though it was a double foot. The values of these are given in the tables of linear measures at the end of this chapter.

The Russian arsheen, an Oriental cubit, originally was divided into 32 palez or digits, and was equal to 2.3557 English feet ; and at one time it was divided into 2 local feet in a manner corresponding to most of the German
and Scandinavian ells; but as it was also the third of the sasheen, Feter the Great reduced the arsheen to $2 \frac{1}{3}$ English feet, thus making the sasheen exactly 7 English feet, and causing the English and the Russian foot to be identical in value. The arsheen is divided into sixteen werschock.

The various Oriental and Levantine piks, or draa, in present use, are said to be mostly derived from the Arabian or Hashemic cubit of Omar, deraga akhdam, of 8 palms or 32 digits, the value of which is estimated to be 2.Io English feet, and from the larger Phileterian cubits, of 8 and of 7 palms, whose values are variously estimated at from 2.433 to I 83 English feet. The investigation of these various piks seldom leads to very useful trustworthy conclusions; even the pik of the CaireneNilometer, now estimated at about I8•I9 English inches from recent measurement, was formerly supposed to be identical with the black cubit of the Khalifat, variously stated as 21.26 and 21.34 English inches. The usuallyaccepted values of the modern piks are given in the tables of linear measure.

The Indian, Indo-Chinese, and Malayan cubits still existing are supposed by some metrologists to have had their common origin in the Arab Hashemic cubit, and their reduced values to be merely due to the degradation of the two ancient cubits of India and of China, which are assumed to have been identical with the former. Whether this is a correct theory, and whether either of those two cubits were Hashemic cubits, is apparently very doubtful. Judging from the facts that the ordinary hāth or Indian cubit, of the present day and for long past, has been 18 English inches, that the Burmese taim has the same value, that the less-used district Indian
cubits rarely exceed is English inches, that the Thai (Siamese) sok is 20 English inches, and the Chinese and Malayan cobid vary between 15 and 20 inches, the above supposition seems hardly tenable.

It is, however, very possible that some special sacred or royal ancient Indian hasta, as well as the Royal saundaung of Burma, may be correctly attributed to that origin ; while the ordinary hāth, from being near in value to the Olympic or Egyptian cubit also used by the Phœnicians, may have been brought into the country by Alexander the Great, or by any of the races entering India from the west at any time, or by the maritime and commercial Phœnicians trading with them.

However this cubit may have been introduced, its identity with the English cubit is very remarkable. The double-cubit, or gaz, of India is also identical with the English yard; the principal distinction consisting in that the Indian hāth is the primary unit, whereas the English yard is, at least at present, the primary unit in the other case ; while the subdivision of the gaz and hāth into inches, in the Roman and English style, is locally unknown in India, although customary in Burma. The ordinary Indian subdivision of the hāth is :-

$$
\text { I hāth }=2 \text { spans }=8 \text { girah. }
$$

Also, \quad I hāth $=6$ palms $=24$ digits or ungli $=72$ jao (barleycorns).
Some of these subdivisions are adhered to and some omitted in various provinces and towns, but none of them correspond to the English inch in length.

The Chinese cubit is subdivided decimally; and the Malayan cubits mostly into halves and quarters.

The values of the various piks, hāths, and other cubits are given in the tables following this section.

THE YARD.

The yard, as known in England, has been considered a purely primitive unit of measure, an Anglo-Saxon girdle, developed into the Winchester yard of King Edgar; but the alternative theory, that it was an approximate double-cubit, adopted during the four centuries of Roman sway, and borrowed from the Romans, is equally tenable. The vara of Spain and of Portugal, which alone correspond to it in Europe, afford indication of support to the latter theory, while the additional argument conveyed by the fact of the ordinary Indian yard or gaz being a recognised double-cubit, and also equal to the English yard, seems entirely conclusive as regards the latter being a double-cubit derived from some source. Its value too indicates that its original cubit either was an Egyptian natural cubit coming through Phœnician traders, or in some other way, or was a Roman cubit (ulna). The analogy afforded by the other English landmeasures points to the latter conclusion; the old Loridon mile of 5000 feet or 1000 paces was a Roman mile retained to a very recent epoch, while the actus simplex of the Romans was a rectangle, 120 feet (40 yards) long by 4 feet in width, and the English acre was established by old statute as a rectangle 40 poles in length by 4 in width ; an evident similarity in mode which indicates that the Roman double-cubit may have been actually used for measuring land in England for centuries before the Saxon invasion. In the statutes of the Norman dynasty, and even till the time of Henry the Seventh, the term ell (ulna) was applied to the yard, the words being indiscriminately used for the same measure ; the aune of France and Normandy being the measure
nearest to the Anglo-Saxon yard known to those that drafted the statutes. It is hence reasonable to imagine that, when the witangemot of King Edgar decreed 'the measure of Winchester shall be the standard,' it enacted in pithy Anglo-Saxon a uniformity that did not previously exist, that the Roman double-cubit and the Saxon gird were till then of different value, but thenceforth rendered identical by adjustment on a Winchester standard. The term verge applied to the English yard in the Anglo-Norman statutes does not convey simply a connection between it and the French, Belgian, and Norman verges, these latter being invariably poles of from 16 to 22 feet in length; the term terra virgata, or terre vergee, in the same way was merely an expression for measured land that was naturally convenient to the Franco-Norman priests that acted as scribes in drawing up enactments at that early period; for they then thought and wrote in accordance with their own ideas; the vergée being a quarter of the Norman acre, as the rood latterly was the quarter of the Anglo-Saxon acre. The more correct term would doubtless have been terra ulnata, as in England it was the Roman double-ell that had been principally and for long time the land-measure, and not especially a mesure daunage, or cloth-measure ; an arrangement exactly the reverse of the French custom.

The subdivision of this compounded yard and double ell was necessarily two-fold, one, the Roman mode, dividing it into 3 feet or 36 inches ; the other, the Saxon method of natural application to a girdle measure, by the folding and successive halving the girdle length, and thus producing sixteenths; both these modes are adopted in the exchequer standard yard of Henry VII.

The complete series of subdivisions in accordance with English tradition is :-

I yard $=2$ cubits $=3$ feet $=4$ spans $=9$ hands
$=12$ palms $=16$ nails $=36$ inches $=108$ barleycorns.
The Spanish vara, which alone among the measures of Europe corresponds exactly to the English yard, was about as much shorter than the Roman double-cubit as the English yard was longer, but was not divided into sixteenths, the mode of subdivision being :-

I vara $=2 \operatorname{codos}=3$ piés $=4$ palmos $=36$ pulgadas $=48$ dedos, or digits.

The Portuguese vara was a measure less neatly systematised, being thus :-

$$
\text { I vara }=I \frac{2}{3} \text { covado }=5 \text { palmos de craveira; }
$$

the covado, or perhaps the palmo, being the more primitive and ordinary unit, one covado being equal to three palmos, 24 pollegadas, or 36 dedos.

It may be noticed that the palmo of Spain, Italy, and the palme of Southern France is not a palm but a span.

The Indian gaz is not only a distinct double-cubit identical in value with the English yard, but is also divided into sixteenths, in the Anglo-Saxon method; the habit of measuring with the personal cubit and that of doubling the girdle-length to obtain a measure being still practised.

The ordinary modes of subdividing the common Indian gaz are thus:-

$$
\begin{aligned}
1 \mathrm{gaz}= & 2 \text { hāth }=4 \text { spans }=12 \text { palms }=24 \text { tassu } \\
= & 16 \text { girah }=48 \text { ungli, or digits }=144 \text { jao or } \\
& \text { barleycorns. }
\end{aligned}
$$

But at some places on the Malabar side the local gaz consisted of $\mathrm{I} \frac{1}{2}$ or $\mathrm{I} \frac{3}{4}$ hāth, or of a certain number of local tassu ; these being exceptional cases.

The geza or gaz of Persia and Arabia differ greatly from the Indian gaz.

The values of all the secondary measures corresponding to the English yard will be found grouped in one set in the tables at the end of this section.

Considering the yard as a double-cubit it may be said to correspond in this respect to the stab or doubleell of Germany and the large French aune, also a doubleell ; the values of these will not be found in the tables, as those of the stab can be easily deduced from the ells by multiplying them by two, and in many cases from the feet by multiplying them by four; while the French aunes may be considered not only as perfectly obsolete since 1840, but as possessing no further interest.

THE FATHOM.

The primitive personal fathom was the natural measure applied to a cord in measuring it with the extended arms to the fullest extent, nearly equal to a man's height; convenience developed this either into lengths marked along the cord, or into short rods or canes of fixed length for enabling it to be done. The fathom or cane, when systematised in a series of measures, was eventually made some simple multiple either of the local foot, or the cubit; in a few cases of the local span ; and in occasional but comparatively rare instances it was made identical with the pace or double-step.

The fathom being thus a secondary unit in almost all systems, it merely becomes necessary here to give the ratio that it bears to the primary unit.

In England the fathom is now treated as a sounding measure of six feet, subdivided in practice to quarters, and termed the common fathom ; the distinctive nautical fathom being a decimal submultiple of the nautical mile, and cable-length, thus: I nautical mile $=10$ cables $=1000$ nautical fathoms, this fathom being about $\frac{1}{80}$ or an inch longer than the common fathom.

The foreign names of the fathom are:-

German: Faden, Klafter Lachter, Dumpflachter.
Dutch : Vaam.
Flemish: Vaem.
Danish: Fawn.
Swedish: Famn.
French: Brasse marine, Toise.
Spanish: Braza, Estado, Brazada, Toesa. Portuguese: Braça, Toesa.

Italian: Cavezzo, Trabucco, Canna, Pertica, Tesa, Bracciata.
Russian: Faden, Saskeen. Polish: Sazen.
Hindī: Danda.
Chinese: Pu. Japanese: Ikje. Thaï (Siam) : Wa. Malayan: Depah.

In Europe generally the fathom is not merely a sounding-measure, but also used in land-measure, and for works of construction; sometimes having different names in accordance with its mode of use, and sometimes also having different values when applied in these various ways.

Its proportions are or were thus :-
In Germany and Austria the faden and klafter were merely different names for the same unit, consisting of 6 local feet; and in Holland, Belgium, Denmark, and Sweden, the fathoms or toises were all of 6 local feet. The exceptions are the modern klafter of Darmstadt of

Io local feet ; the lachter used in mines, which is $6 \frac{2}{3}$ local feet in Prussia and 7 local feet in Saxony; and the Bohemian dumpflachter, 4 Bohernian ells.

In France generally, under the old system, the brasse marine was 5 local feet, but the toise 6 local feet; in Burgundy the toise was $7 \frac{1}{2}$ local feet, and in some few places $5 \frac{1}{2}, 6 \frac{1}{2}$, 7 , or even 8 local feet. In Spain, the estado, braza, brazada, and toesa, were all names for a measure of 6 local feet ; but the brazada of the Canaries was $6 \frac{1}{2}$ local feet. In Portugal the braça as a soundingmeasure was 5 local feet, but was also termed either a braça or a toesa for other purposes when it was a measure consisting of 2 local varas or $6 \frac{2}{3}$ local feet. In some parts of Switzerland the klafter or toise was 8 local feet, and in others the toise was also the perch and consisted of io local feet. The Italian fathom, generally termed the cavezzo, but taking the name trabucco in Piedmont, Nice, and Sardinia, is almost invariably equal to 6 local feet ; the exceptions are the cavezzi of Florence and of Mantua, equal to 6 local bracci, and the trabucchi of Nice and of Sardinia, equal to 12 local spans (palmi). The sasheen of Russian land-measure is 7 Russian or English feet, but there is also a fathom identical with the English fathom. The Polish sazen is reputed to have been σ local feet.

The Chinese pu is the pace of. 5 Chinese feet with which the national fathom is identical. The ink or tattami of Japan, also a pace, is equal to 6.2355 English feet; and the ikje of commerce and cloth-measure is nearly 7 English feet, a long fathom. The wa of Thai (Siam) of 4 local cubits is equal to $6 \frac{2}{3}$ English feet, and the depah of Sumatra, Prince of Wales Island, and some other places in the Malayan Archipelago, is equal to the

English fathom, and is subdivided into 8 spans (jaukal). The Indian danda was $2 \frac{1}{2}$ local gaz.

Among all these fathoms, the French toise holds the prominent place of affording the origin of a new system of measures ; the half-toise, slightly modified and named a mètre, having been made the basic unit of the metric system, hereafter described.

The proportions of the whole of this series of fathoms, or measures corresponding to the fathom, being here given, their actual values may be easily calculated from the values of the foot, or of the cubit or yard, given in the tables, excepting in one case, that of the Italian canna or pertica, which bears no direct proportion either to the bracci or the piede, and cannot be termed a perch in the general sense of the term, which indicates a much larger measure. This measure, termed the canna in commerce and pertica in land-measurement, was exceedingly variable in value all over Itaiy; it was generally equal to 8 local spans (palmi), in a few places equal to 7 spans, $7 \frac{1}{3}$, $7 \frac{1}{2}$, or $7 \frac{2}{3}$ spans, and in Sardinia io spans ; at Rome and at Florence the canna of commerce was 8 spans, but the canna of works of construction and buildings io spans; the tesa of Savoy was 6 Chambéri feet, and the Neapolitan bracciata was simply a French brasse marine of 5 French pieds du roi. This detail would not be worthy of mention, so long after the Italians have adopted the metric system, were it not a land-measure, and on account of the long survival that so-called obsolete land-measures pre-eminently enjoy. There seems however, to have been no need for these incongruous Italian canne or pertiche, as the Italian cavezzi and trabucchi, which were convenient measures used all over Italy for the same purpose, and also multiples of bracci or piede, could always be made to take their place.

THE ROD AND THE POLE.

The rod, rood, poie, perch, lug, are various names applied to large linear measures of land-measure, that sufficiently indicate their origin ; the values of measures of this type, when distinct from fathoms, generally lie between 10 and 25 local feet, or some approximate corresponding values in cubits or yards. It would, however, be a mistake to imagine that the rod, the pole, and the perch have always been measures of exactly the same sort; there seems little doubt that the rod was generally a small unit, a double pace, or double fathom, either IO or 12 feet, while the pole was between 12 and 24 feet.

In Italy the canna or rod was a small unit used both for land-measure and cloth-measure, an approximate fathom; the exceptional or large canne of Tuscany and Sardinia alone being true rods.

In early English times the rod was probably a Roman pertica of io feet, while the pole had its present value as a special English term, and the foreign perch or ruthe was from about I4 to 24 feet ; the present English unit is evidently one of compromise, to which the term pole is alone strictly applicable.

In England there were formerly several local pole measures, 6 yards, 7 yards, and 8 yards ; the pole of $5 \frac{1}{2}$ yards or $16 \frac{1}{2}$ feet, still remaining, seems to have been adopted not from any advantage it possesses as a linear measure, but because its square, the square pole or perch, the $\frac{1}{160}$ th part of the acre, supplied a mode of arriving at the latter through calculation, in a method analogous to the Roman mode of deriving the actus quadratus.

At present the English linear pole may be considered
a practically obsolete measure as far as surveyors are concerned, besides being an inconvenient and unnecessary unit of calculation. It seems even very doubtful whether a linear pole of any other length would not be also an entirely needless intermediate unit of calculation.

For the practical purposes of measuring land with deal rods under ordinary circumstances, rods of io feet are most convenient, as shown by the demands of Canada for numerous io-feet standards mentioned in the reports of the Warden of the Standards for the last io years; but rod-measurement being less rapid than chaining, the latter mode of measuring has generaliy superseded the former ; and the rod is hence mostly used merely for taking offsets in surveying. The term rod, though under old legal statute applicable to the pole, is actually more often applied to the Io-foot rod, which is the tenth of the Ramsden chain of roo feet, and forms a convenient intermediate unit in the decimal system of measures based on the English foot. The pole or perch may be considered a mere nominal unit not alone in England, but almost everywhere. In Spain-where they have, as in England, a yard (vara) of 3 local feet, a fathom (estado or braza) of 6 local feet, and a doublefathom (estadal) of 12 local feet corresponding to our rod-the estadal was practically disused both in measurement and in calculation, the vara being the unit of calculation, the braza being occasionally used, and perches almost unknown. In Italy there was, properly speaking, no perch at all that corresponded to European perches, the cavezzi and trabucchi used for the same purpose being fathoms of 6 local feet, while the so-called pertica was really a canna, and merely an approximate fathom of a particularly inconvenient kind, as before explained.

The Russian arsheen used in land-measure is a local fathom, and the perch does not exist ; the Japanese ikje is also a local fathom, and the perch is either wanting, undiscoverable, or identical with it.

The foreign terms applied to rods, poles, and perches are-

Germany and Sweden : \mid Polish: Pretow.

Ruthe.
Dutch and Flemish : Roede.
Danish and Norwegian : Rode.
French, also in Belgium :
Perche and Verge.
Italian : Canna and Pertica.

Arabic: Gassab.
Hindī: Vansa.
Burma: Dha.
Sumatra: Famba.
Chinese: Chang.
Guinea: Facktan.

The German ruthe is also termed a land-ruthe, feldruthe, or wald-ruthe, in accordance with the description of land measured, and sometimes varies in value on that account alone. In a few exceptional cases in Germany, the value of the linear ruthe has been unduly forced into prominence by attempts to form on its basis a decimal series of measures, and by forming an additional landfoot from it in that way.

The rods of the following countries and places consisted of io local feet or were double paces :-

Baden.
Bavaria.
Denmark and
Norway.

and $|$\begin{tabular}{l|l}
Darmstadt.

Frankfurt.

Elsass and Loth-
ringen.
:---
Würtemberg.
Zurich and Basel.
China.

\end{tabular}

The rods of Prussia, Franconia, Würzburg, Anspach, and Constance were double fathoms, or equal to I2 local feet.

The gassab or Arab rod is 12 local feet or 8 cubits. The dba of Burma is equal to 7 royal cubits (saundaung) or 12 feet 10 inches of English measure. The jamba of Sumatra is 4 haila, or equals 4 English yards.

The poles of Lithuania, Silesia, and Poland were 15 local feet.

In the following places and provinces the pole was i 6 local feet:

Aachen.	Cöln.	Mecklenburg.
Bremen and	Creveld.	Mayence.
Hamburg. Brunswick Hanover. Coblenz.	Gotha.	Luxemburg.
Leipzig.	Puremberg.	Pemerania.
Wippe-Detmold.		

Other poles, verges, ruthes, \&c., were thus :-
Gotha and Hesse: i4 local Old Indian Vansa: io feet.
Oldenburg and Paris: 18 local feet.
cubits.
Normandy: 22 local feet. France, generally from 20 to 22 local feet.

The present Dutch roede is io mètres, and the perche or ruthe of Baden and the Canton de Vaud is 3 mètres. The metric French perch, adopted in the transition period, was io mètres.

THE ROPE OR CORD.

The cord or rope is a measure slightly more obsolete than the rod, pole, or perch ; in England there were several of these measures, the principal being the cords and ropes of 20 feet and of 25 feet. In Spain the cuerda was either 25 local feet, or 8 local yards (varas).

In Brittany the corde was equal to 4 Parisian fathoms, toises, or 24 Parisian feet, but more correctly was 3 gaules, an old fathom of Brittany ; 80 square cordes went to the journal of Brittany, which slightly exceeded the English acre. The chaînée of Poitiers was equal to the corde of Brittany ; and the chaînée of Tours and other places was equal to 25 Parisian feet; all these measures being evidently of one type. Although obsolete, this measure is of a convenient length for common rough landmeasurement ; the cause of its abandonment is doubtless due to the practical inaccuracy of rope-measurement from shrinkage ; but as thick wire or wire-rope would not be open to this objection, would coil easily, and be inexpensive, there is yet some possibility of a future revival of some such measure, from its practical superiority over the pole in point of convenience in every way.

THE CHAIN.

The chain of land-measure varies, or has varied in different parts of the world, from about 50 to I 50 feet in length. In England at the present day there are two chains in use, one the so-called Gunter's chain of 4 poles, equal to 22 yards or 66 feet, a submultiple both of the statute mile and the acreside ; the other, the Ramsden chain of 100 feet, suited to the convenience in detail of surveying, arrived at by keeping all measurements in feet and decimal submultiples.

As to the real origin of the former chain, there is little information available about ancient English chains; the old Scotch chain was equal to 24 Scotch ells or 74.4 present English feet; a more modern one exactly 74 feet ; the old Roman chain (actus) was 24 Roman paces,
or 120 Roman feet ; and both the Ptolemaic Phileterian and the Greek chains (amma) were 60 local feet. This last value being near the short English chain, it may be conjectured to have been either an imported Phœnician unit of measure, or a half Roman chain, until readjusted as a multiple of the pole by Gunter.

The long chain was probably a modified Roman chain, as its square is very nearly a rood, but its reintroduction is very modern, probably dating from not long before the time of Ramsden, and the commencement of the Ordnance Survey of England.

The following are the foreign names for the chain :German: Schnur, Seil, | Italian : catena. Kette.
Dutch: Snoer. Polish : Sznurow. French : chaîne.

Spanish : cadena.
Thaï: Sen.
India: Tenáb.

The German chains are said to have been generally io rods in length, and, as many of these rods were io feet, they were mostly chains of ioo local feet. In other cases they were more, the Danzig seil being iso local feet; so also the schnur of Kœnigsberg and Pillau. The sznurow of Poland was I 50 local feet. The Bohemian wald-seil was 42 local ells, and the weinberg-seil 64 local ells.

The Arab chain is Io gassab (poles) or 120 local feet; the ancient Indian tenáb was 50 gaz (yards) ; and the sen of Thaï (Siam) is 20 wa (fathoms) or 80 local cubits (sok). The metric chain, used by nations that have adopted the metric system, is 20 mètres, or, as it is termed by the French, a double-decamètre.

The values of the various fathoms, rods, cords, and
chains, which are in all cases secondary units of linear measurement, can be obtained by treating them as multiples of the foot, or from values given in the table at the end of this chapter.

THE ACRE-SIDE.

The acre-side, the rood-side, or the side of the principal measure of surface used by any nation, is often a linear unit of importance in calculation, although very frequently not an acknowledged legal unit, and unfortunately sometimes so entirely lost to sight in the arrangements of a system of measures as to be rendered most incongruous and inconvenient in its relation to other linear measures.

For instance, the English acre-side is-
$208.710326 \mathrm{ft} .=69.5701085 \mathrm{yds} .=34.78505425$ fathoms
$=12 \cdot 6491106$ poles $=3 \cdot 1622777$ Gunter's chains $=2.087 .10326$ Ramsden chains.
The English rood-side is-
$104.3551629 \mathrm{ft} .=34.7850543 \mathrm{yds}=17.3925272$ fathom $=6 \cdot 3245553$ rods $=1 \cdot 58$ II 388 Gunter's chains $=1.043551629$ Ramsden chains.
But in the French system, the side of the hectare is exactly 100 mètres, and the side of the arc is 10 mètres. Even in Sumatra, the linear orlong, or local acre-side corresponding to the square orlong, or local acre, is exactly 20 jambas (local perches) or 80 haila (English yards) in length; while the side of the jamba or local square perch is a linear jamba of 4 hailas.

The side of the Arab feddan is exactly 240 local feet ; the side of the Spanish cuadra cuadrada is exactly

150 local varas; the side of the Bavarian tagwerk is exactly 20 perches or 200 local feet, so also is that of the Baden morgen; that of the Piedmontese giornata was I20 local feet, and that of the Mecklenburg acre 10 local perches, or 160 local feet.

The side of the Tyrolese starland is 10 perches or Ioo feet. The side of the Venetian migliajo was, like the English acre-side, exceedingly inconvenient, being $\sqrt{1000}$ passi or $31 \cdot 622776$ paces of 5 local feet; although the migliajo itself of iOOO square passi was well arranged with respect to the miglio or mile of 1000 passi ; as it formed the thousandth part of the square mile; and this is a typical case illustrating the inconvenience of using thousands in square measure ; in the same way as the hectare, are, and square mètre show the advantages of hundreds and myriads for the same purpose. The side of the Darmstadt morgen was 20 klafter or 200 local feet, and several other acre-sides of Germany and France were equal to Io or to 12 local perches or ruthes, as may be seen by inspecting the table of acres and taking the square roots of the number of square perches and square feet of which they are composed. But the greater part of the remaining acre-sides, \&c., in present use do not bear any such convenient relation to other linear measures of the system, so that a record of their values would not be of much use in any calculations.

ITJNERARY MEASURES.

THE FURLONG of 40 poles long, unknown by that name out of England, is a modification of the Roman stadium, which was an eighth of the Roman mile, and nearly equal to the Olympic $\sigma \tau a \dot{\delta} \iota o \nu$. There are corre-
sponding estadios in Spain and in Portugal, that are eighths of the national miles, and consist of 125 paces.

The present value of the English furlong adapted to the English statute mile-a modern arrangement-is 132 paces, but as the Old London mile of 1000 paces was the local form of the Roman mile, its former value was 125 paces.

At present it may be termed a mere expression for the eighth of the mile that is in use, and a multiple of a disused pole, but can hardly be considered a measure.

The values of the furlong and estadios may be reduced from the values of the corresponding miles given in the table at the end of this chapter.

The mile.-Among the itinerary measures of the civilised world, the mile has, since the Roman period, been the principal and the most important. The mile, considered as a simple measure of distance taken from primitive personal measures, was 1000 paces or pairs of steps; but the mile, in a system of national measures, consisted of 1000 reputed paces or units called paces, which among the Romans was 5 Roman feet, so that the Roman milliarium was 1000 paces or 5000 feet. The Old London mile, which, as well as the rebuilding of London, was due to the Romans, was correspondingly 5000 local feet.

The old Irish mile of 320 Irish perches was 6720 English feet, and the old Scotch mile of 1920 Scotch ells was 5929.6 English feet; there were also several other local miles in England before the modern statute mile of 5280 feet, or 1056 paces, was adopted as the Imperial unit. This last was evidently a systematised mile, arranged to make the mile exactly 320 poles, and the square mile exactly equal to 640 acres - an unfortu-
nate mode of disposition that entirely neglected the consideration of that important unit, the acre-side.

Had the land-mile been made 6000 feet, or 2000 yards, in length, and the acre-side exactly 200 feet instead of $208 \cdot 7$, there would have been exactly 30 acresides to the mile, and also exactly 900 acres to the square land-mile ; a preferable arrangement that would have adjusted the whole, altered the acre slightly, and abolished the pole entirely. Such a mile would have been one-fifth longer than the London mile, and easily estimated in calculation; besides becoming identical with the correct and typical Indian kos of 2000 gaz (yards) of Indo-Germanic origin.

However much the statute mile and its complication. may be regretted, there is no doubt that any departure from the original London mile would have entirely altered the type from the milliarium of 1000 paces; while the change actually made removed the mile from one type without putting it into another class of itinerary, and rendered it an exceptional measure.

Among all the miles of antiquity since the Roman period, no such modification of the type appears to have been ever made. The other type of mile is an itinerary measure roughly approximating in value to a milliarium, such as the Chinese li of 360 paces, or 1800 local feet; the Russian werst of 500 sasheen, or 3500 feet; the French kilomètre of 1000 mètres; and the Indian cos of 2,000 yards; also the Hebrew Saturday walk of 2000 cubits, or about 4000 feet, which cannot be correctly termed a journey.

The values of the modern miles, that are approximately milliaria of the Roman type, are given in the tables of miles at the end of this chapter ; it will, how-
ever, be noticed that the German stage-miles do not follow this type, and are given separately; the small itinerary measures of some nations are also given apart.

The league appears to be in general an itinerary unit representing an hour's walk, based on the ancient parasang of Chaldæa, Persia, and Arabia, and the later parasangs of Egypt, Asia Minor, and Armenia.

Most of these consisted of 3 local miles, but some of them of 4 local miles. The surviving parasang of modern times, the Turkish agasha, is 3 berri ; and the leagues of most modern nations that adopted Roman milliaria are generally 3 miles; among these the English had a league of 3 statute miles, which is not a legal unit at present, and hardly even survives in the language of the people as an expression. The term league being hence free, it is proposed (see 'Scientific System') to apply it to a unit of two Old London miles, 10000 feet, or 100 Ramsden chains, which is nearly equal to three kilomètres, and thus to complete the decimal series of measures based on the foot.

The discarded French postal league consisted of two old French miles.

The German stunde is a measure corresponding to the league, conveying the same idea of the hour's walk, and it is very possible that the old stunden of Germany, of which those of Westphalia, Baden, Bavaria, Würtemberg, and Bohemia, retained the longest vitality, were primitive units of itinerary measure in that country, although latterly they have been treated as secondary measures or halves of the large German post-miles or stages.

In countries that were destitute both of an approximate Roman milliarium, and of a stage-measure or post-
mile, and any very large itinerary, the hour's walk could neither be a multiple of the one nor a submultiple of the other ; as, for instance, the old Flemish and Dutch uer and uur, which were primary measures consisting of 1000 verges or roede, or 20000 local feet. Also the roeneng of Thaï (Siam), of 2000 local fathoms (wa); and the dain of Burma, of 1000 dha or local perches.

The Chinese pôu, consisting of 8 li or nearly 4 English miles, is a league of the secondary description, being a tenth of the tsan or journey.

The values of the primary leagues are given in the table following ; but those of most secondary leagues may be obtained either by multiplying the miles (milliaria) by three, or by dividing the German post-miles (stages) by two.

The stage, post-mile, gross-mile, or staging-distance of Germany is an itinerary measure not to be confounded with the ordinary miles, or milliaria, before mentioned, as it belongs to an entirely different type. The Teutonic and Scandinavian meil is a stage, or stathm.

Referring to ancient measures, we find a stathm or stage as a unit of measure in use in Syria and Asia Minor, consisting of 6 Egyptian miles; also a stathm used in Persia and Western Asia that was equal to 4 parasangs or leagues, and was therefore nearly 12 miles ; the latter stage being very nearly double the former. Now, double measures of many sorts were quite a common institution in Asia in ancient times, and probably also double stages ; also there was the postal-stage for runners, and that for mounted men or for horses, as well as the stage that consisted of a day's march or a journey. The latter stathm was probably a journey, while the former seems to have been a postal distance, corre-
sponding to the Teutonic post-meil of about two leagues. In India there was in ancient times a yojana of 4 ancient kos, which may have been from 5 to 6 miles, and was probably a postal-stage of the same type, though nominally a journey. The values of the various primary post-meil and gross-meil are given in the table.

THE JOURNEY, day's walk, or day's march, is now an obsolete itinerary measure in Europe, and nearly so elsewhere. The Norwegian and Westphalian postalmeil, and Swedish and the old Hanoverian polizei-meil, the longest of their type, do not exceed 7 English miles in length, and are therefore merely stages. In Asia, the journey was in many countries a specified measure, of which the various corresponding miles, leagues, and stages were well-defined submultiples.

The present tsan of China is $=\mathrm{r}$ pôu $=80 \mathrm{li}$.
The ancient marhala of Arabia $=8$ parasangs.
The South-Indian kâdam $=7$ nali-vali.
The gavada or journey in Maisur had two values, the ordinary and the large gavada, one about io miles, the other about I2 $\frac{1}{2}$ miles; and in India generally, to the present day, stages or camping-grounds are fixed at distances on a route, called a kunch or march, that are about io miles; while the dūna kunch, or double march of 20 miles, is similarly recognised. There are probably in several other countries accepted notions of the journey as a unit of measure that have not received the attention of metrologists.

GEOGRAPHICAL AND NAUTICAL ITINERARY MEASURES.
Measures of this type differ from all the preceding itinerary measures in that, instead of being multiples of
common and commercial linear measures, they are submultiples of some estimated geodetic quantity or value, such as the polar or the equatorial axis of a mean terrestrial sphere, a terrestrial meridional quadrant passing through some country or town, a mean degree of latitude, or of longitude, either on the earth as a sphere, as a spheroid, or on any great circle of the earth.

The geographical mile is considered in England to have a value that varies with the latitude; adopting the English method of treating the geographical mile as a minute of latitude, or a sixtieth of a degree, its value for any locality would have to be deduced from the nearest recorded or estimated values, such as the following :-

Value of the mile.

Latitude.				Feet.
At 0°	-	-	-	$6045 \cdot 5$
, 10°	.	.	-	60444
, 20°	-	-	-	6054.3
, 45°	-	-	-	$6075 \cdot 7$
, 50°	-	-	-	$6082 \cdot 5$
, 54°	-	.	-	$6085 \cdot 1$

But the more usual Continental method, as far as the books of foreign metrologists indicate, apparently was to treat the geographical mile as a sixtieth of a fixed value of a mean degree of latitude, determined or deduced from such measurements as have been afforded by various geodetic surveys. The value they use for their purpose is equal to 6076.98 English feet (at the scientific value); according to another computation, taking III•I34 mètres as $=12 \mathrm{I} \cdot 540$ yards, the value would be 6077.00 feet. On referring to the latest English book on the subject of 'The Science of Weighing and

Measuring and Standards of Measure and Weight,' by H. W. Chisholm, Warden of the Standards (London, 1877), the mean length of a degree of the meridian is stated to be 364591 English feet, at page 26 of that book; thus making the minute 6076.52 English feet. Taking the old accepted mean diameter of a sphere corresponding to the spheroid to be 7912.5 statute miles, a minute of mean latitude becomes 6076.36 English feet; but the higher value of 7916.7 miles gives 6076.52 .

This variation in the estimated value of a mean minute of latitude amounts as a maximum to about $\frac{3}{4}$ of a foot, or one per myriad ; if this were a final maximum, it might not be considered excessive, but future geodetic measurement and astronomical observation, aided by modern devices, such as electric communication, and electric-light signals, may cause perpetual alteration of the estimated value. The insufficient information now available, based on limited geodetic measurements, is at present fatal to accuracy and certainty. The recent triangulation across the Straits of Gibraltar, aided by the electric light, has enabled a connection to be formed between European and future African series; but until a few degrees both of latitude and longitude at and on the equator have been actually measured, not only by persons of some single nationality having particular metrologic views and objects, but by scientific men of several nations, the nucleus of geodetic measurement may be considered a mere embryo. At present the world is believed to be a doubly oblate spheroid, oblate at the poles, and oblate on the equator at $105^{\circ} 34^{\prime}$ of longitude ; future measurements may prove so much variety of configuration as to greatly alter the mode of reduction to mean sphere, and thus doubly affect the variation in value of the mean minute of latitude.

Under these prospects it is perhaps better not to attempt any fresh reduction of Continental geographical or of nautical miles to commercial or scientific measures of length, but to leave them in their original form, as submultiples of a mean degree of latitude, whatever it may be.

The geographical mile of Prussia and of Poland is an arc of 4 minutes, or 15 miles to the mean degree ; a larger mile of 5 minutes, or 12 miles to the mean degree is also adopted in Germany as well as in Bohemia ; a geographical mile of six minutes, or io miles to the degree, is adopted in Norway. The geographical leagues of France in former times were the common league of an arc of $2^{\prime} 24^{\prime \prime}$, or 25 leagues to the mean degree, and the mean league of an arc of $2^{\prime} 42^{\prime \prime}$, or $22 \frac{9}{9}$ leagues to the mean degree.

The Italian mile is a geographical mile of 1 minute, or 60 miles to the mean degree. According to English notions, as before explained, none of these would be geographical miles.

Nautical miles and leagues may be estimated in several ways ; first, as an English geographical mile, or length of a minute of a degree of latitude at mean sealevel, varying with the latitude from 6046 feet to 6107 feet ; second, as a Continental geographical mile, of one minute of a mean degree of latitude, or about $6076 \cdot 5$ feet or I'I508 statute mile; third, as the value of a minute of a supposed mean degree of longitude at the equator, or about 6086.5 feet, or $\mathrm{I} \cdot 528$ statute miles. The Continental nautical miles are determined by the second method. Besides the nautical miles thus determined, there are arbitrary knots or sea-miles in common use : first, the common knot of 6082.66 feet or

I•I5202 statute miles; second, the Admiralty knot of 6080 feet or I'I5I5 statute miles. The sea-league is equivalent to three sea-miles or knots as the case may be ; and the sea-miles and knots are subdivided into ro cables or 10000 fathoms, such cables and fathoms being termed nautical cables and nautical fathoms, to distinguish them from the common or land units.

COMMERCIAL AND SCIENTIFIC VALUES.

The English equivalents of the foreign metrical units of length, given in the following table, are arranged separately as commercial and scientific values. The whole series of commercial measures is by law determined at the English normal temperature of 62° Fahrenheit in air under special average conditions of pressure, air-density, latitude and so forth; this rather intricate arrangement affords the commercial man practically possible conditions under which he may compare his units with standards, and arrive at a close approximation to exactitude in any single detached unit. It hence meets the requirements of separate branches of commerce, and fulfils its object; although for scientific and for more extended purposes it fails, in that the relation between units of weight and volume is complicated.

The whole series of English scientific values of units of measure is determined at 32° Fahrenheit in vacuo; though the water used for comparison of weight and volume is at its maximum density, involving a temperature of about 39°. The relation between units of weight and volume is hence more simple ; and the system is more suited to technical and scientific purposes. The decimalised series of scientific units, based solely on the
foot, square font, cubic foot, and foot-weight render comparison with French units excessively simple throughout. The comparison of English scientific units with English commercial units of length is effected by allowing for the linear expansion of brass or bronze for 30° difference of temperature, about 0.000285 , which can be easily applied in the form of a percentage; this small quantity seriously affects values in large units.

The French metric units are determined at 32° and 39° in the same way, and constitute a scientific system ; no special arrangement to suit commercial purposes forming part of the system.

In comparing units belonging to systems of different temperature, contraction or expansion, has necessarily to be taken into account ; this allowance has been made in the following tables.

IMPERIAL AND NATIONAL FEET.

	$\underset{\substack{\text { Commercial } \\ \text { Equivalent. } \\ \text { Feet }}}{\substack{\text { English } \\ \hline}}$	$\|$English Scientific Equivalent. Feet	French Scientific Equivalent Millimètres
Foot of Great Britain, America, Russia, and of their dependencies and colonies, at the normal temperature of $62^{\circ} \mathrm{Fahr}$.	I 0000	0.9997	$304 \cdot 71$
The same at the temperature of 32° Fahr.	I 00003	$1 \cdot 0000$	30479
Rheinfuss of Norway, ${ }^{1}$ Denmark, ${ }^{1}$ and Prussia . .	$1 \cdot 030$	$1 \cdot 0297$	313.85
Foot of Sweden ${ }^{1}$ and Finland ${ }^{1}$	- $\cdot 9743$	$0 \cdot 9740$	296.87
Foot of the Austro-Hungarian Empire	1.0373	1.0370	316.08
Spanish foot .	0.9134	$0 \cdot 9132$	$278 \cdot 33$
Portuguese foot	1.0830	$1 \cdot 0827$	$330 \cdot 00$
Chinese foot of the Board of Works, Kambuchih	I•0594	$1 \cdot 0591$	322:81

FORMER AND LOCAL SBECIAL. FEET.

Germany:-

Rheinfuss, Prussia	$1 \cdot 0300$	$1 \cdot 0297$	313.85
Anspach, Baireuth ${ }^{1}$	- 0.9839	$0 \cdot 9836$	299.80
Altona, Hamburg ${ }^{1}$	- 0.9402	$0 \cdot 9399$	$286 \cdot 5$
Baden (metric foot) ${ }^{\prime}$	- 0.9846	$0 \cdot 9843$	300
Bavaria (ordinary foot)	- 0.9578	0.9576	291.86.
(Werkschuh) ${ }^{\text {l }}$	- 0.9721	0.9718	$296 \cdot 2$
Culm ${ }^{1}$	-. 9455	0.9452	$288 \cdot 1$
Bavaria, Rhenish	- I•0939	$1 \cdot 0936$	333.33
Bremen ${ }^{\prime}$	- 0.949I	0.9488	289.2
Brunswick ${ }^{1}$	- 0.9365	$0 \cdot 9362$	285.36
Cöln and Aschaffenberg ${ }^{1}$	- c.9438	0.9435	$287 \cdot 6$
Danzig ${ }^{1}$	-.9416	0.9413	286.9
Elsass (Stadtschuh)	-0.9491	0.0488	289.2
(Landschuh)	- 0.9681	0.9678	
Gotha	0.9439	0.9436	287.62
Halle ${ }^{1}$	-0.9472	0.9469	288.63
Hanover ${ }^{1}$	- 0.9586	0.9583	292.10
Heiligenstadt and Erfurt ${ }^{1}$	- 0.9291	0.9288	283.1
Hesse Darmstadt ${ }^{1}$.	- 0.8205	0.8203	250
Hesse (Electoral) ordinary ${ }^{1}$	- 0.9442	$0 \cdot 9439$	2877
(Landfuss)	- 0.9350	0.9347	284.9
(decimal Landfuss)	- 1-3091	1-3087	$398 \cdot 9$
Holstein ${ }^{1 \prime}$. .	- 0.9795	0.9792	298.45

2 The ells of these countries and places were $=2$ local feet; the stab $=2$ ells.

FEET-continued.	English	English	French
FET-continued.	Commercial	Scientific	Scientific
India :-	$\underset{\text { Feet }}{\text { Eiduivalent. }}$	Equivalent.	Equivalent.
Malabar ady . .	-0.8717	Feet 0.8714	$\begin{gathered} \text { Cillimètres } \\ 265^{\circ} 60 \end{gathered}$
China :-			
Kambuchih, or kongpuchih of the Boar of Works	$1 \cdot 05$	1.0591	22.
Chih of the Imperial Survey (1700)	- $1 \cdot 0083$	$1 \cdot 0080$	$307 \cdot 24$
Chih of the Tsing dynasty since 1644	- I.0487	$1 \cdot 0484$	319.54

LOCAL VALUES.

The chih $=10$ tsun $=100$ fan almost invariably.

Japan :-

Ordinary shaku or jaku $=10$ sung $=$

Kujirad shaku for fabrics . . . $\mathbf{I} \cdot 2500$ 1.2497 $380 \cdot 89$
${ }^{1}$ This is the latest correct value obtained in 188 r .

FEET-continued. MANILA :-	English Commercial Equivalent. Feet	English Scientific Equivalent. Feet	French Scientific Equivalent. Millimètres
The Castilian pié. See General Values. A Chinese chih for ship-building \&c.	I'1515	$1 \cdot 1512$	$350 \cdot 87$

CUBITS, ELLS, BRACCI, ETC.

| England, North America, and India cubit | 1.5000 | $1 \cdot 4995$ | $457 \cdot 10$ |
| :--- | :--- | :--- | :--- | :--- |

Denmark, Norway, and Sweden:-

Germany. The German ells were very often 2 local feet ; see Table of Feet. Those that did not consist of two local feet were the following :-

| CUBITS—continued. | | English
 Commercial
 Equivalent.
 Feet | English
 Scientific
 Equivalent.
 Feet | French
 Scientific
 Equivalent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Millimetres | | | | |

CUBITS-continued. Egyptian Piks :-	$\begin{aligned} & \text { English } \\ & \text { Commercial } \\ & \text { Equivalent. } \\ & \text { Feet } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { English } \\ \text { Scientific } \\ \text { Equivalent. } \\ \text { Feet } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { French } \\ \text { Scientific } \\ \text { Equivalent } \\ \text { Millimêtres } \end{gathered}\right.$
Cairo pik beledi (for cloth and cotton	1.8657	1 -8651	$568 \cdot 47$
Cairo pik Stambul (for European silks)	$2 \cdot 2690$	$2 \cdot 2684$	6914
Cairo pik méhandeze (for land) $=24$ kirāt	2.5320	$2 \cdot 5312$	771.5
Abyssinia, a Turkish pik	$2 \cdot 2506$	$2 \cdot 2499$	685.8
Algerian, Berber, and Moorish Piks :-			
Algeria, the Turkish pik $=8$ robi .	2'1003	2.0997	640
,, the Moorish or Arab pik	I 5753	$1 \cdot 5748$	480
,', Oran pik	$2 \cdot 2514$	$2 \cdot 2507$	686
Tunis pik (for woollen fabrics)	$2 \cdot 2084$	$2 \cdot 2077$	672.98
,, ," (for silken ,,)	2.0699	$2 \cdot 0693$	$630 \cdot 73$
", ", (for linen ",	1.5525	1.5520	$473 \cdot 05$
Morocco covado	17500	17495	$533 \cdot 2$
Also a Moorish pik	2•1692	2.1685	$660 \cdot 96$
Barbary, Tripoli pik $=3$ spans	$2 \cdot 2024$	$2 \cdot 2017$	671.05
,, arbidraa or small pik	1.5863	1.5858	$483 \cdot 35$
Persian Piks:-			
Bandar Abbas pik.	2.001	$2 \cdot 001$	$609 \cdot 75$
Bushahr gezcha	I•533	1.533	$467 \cdot 1$
Indian Hāth:-			
Common hāth $=\frac{1}{2}$ gaz $=2$ spans	1.500	1.500	457.1
Ahmadnaggar hāth $=\frac{4}{7}$ gaz	1.125	$1 \cdot 125$	$342 \cdot 8$
Belgaum hâth	I 604	$1 \cdot 604$	488.75
Bangalur hāth $=\frac{1}{2} \mathrm{gaz}=8$ gira	1.592	1.592	$485 \cdot 1$
Dharwar hāth .	1.625	$1 \cdot 625$	$495 \cdot 15$
Jaulna hāth $=24$ unglī $=8$ gira	1.400	$1 \cdot 400$	$426 \cdot 6$
Masulipatam häth $=3$ spans	I.594	1.594	485.7
Ranibednor hāth	1.573	1.573	$479 \cdot 3$
Surat hāth $=18$ tassu	1742	1.742	$530 \cdot 8$
Bombay hāth $=16$ tassu	1.500	1.500	$457 \cdot 1$
Goa covado	$2 \cdot 233$	$2 \cdot 233$	$680 \cdot 4$
Ceylon cobido	1.542	1.542	469.9
Burma, ordinary cubit $=18$ pulghat	1.500	1.500	$457 \cdot 1$
,, royal saundung $=22$ pulghat	1.833	1.833	$558 \cdot 6$
Cubits of Eastern Asia :-			
Singapore (asta) ; Prince of Wales' Island (asta $=\frac{1}{4}$ depa) ; Sumatra, Fort Marl-			
borough (esto $=\frac{1}{4}$ depoh) . . .	$8 \cdot 500$	1.500	457.06
Sumatra, common etto	1.560	1.560	475.3
China-Canton, Cachao, Pekin, Sulu ${ }^{\circ}$			
Moluccas, Amboyna, Malacca (cubit)	1.522	1.522	463.8
Java, Bantam (cubit)	1.650	1.650	$502 \cdot 8$
," Batavia	2.250	$2 \cdot 250$	$685 \cdot 6$
Anam thuok = 10 tak	1.600	1.600	487.53
Borneo hasta.	1.500	1.500	457.06

DOUBLE-CUBITS.

Yard, mètre, vara, stab, aune, gaz, zar', \&c.

GENERAL VALUES

England, North America, and India: the yard $=2$ cubits $=3$ feet $=16$ nails; or $\operatorname{gaz}=2$ hath $=16$ gira I
The scientific value of the same at 32°.

English Commercial Equivalent. Yards	English Scientific Equivalent. Feet
I	
I	2.9991

French Scientific Equivalent. Mètres
0.9141

Germany, Austria, and Switzerland : the $\operatorname{stab}=2$ local ells. See tables of ells.
France, Italy, \&c. : the mètre, or metro.
Holland and Belgium : the Nederlandsche el or mètre.
Spain : the Castilian vara $=\mathbf{2}$ codos ordinarios $=3$ piés
Portugal : the Lisbon vara $=1 \frac{2}{3}$ covados $=$ $3 \frac{1}{3}$ pés
.
Persia : zar' $=4$ charak $=16$ gira . . I 1377
Thai (Siam) : ken = 2 sok $=4$ küb .
Sumatra : hailah $=2$ esto $=4$ jankal
Borneo ella $=2$ hasta

$$
\left|\begin{array}{ll}
\cdot & I \cdot I 377 \\
\cdot & I \cdot I I I I \\
\cdot \\
.
\end{array}\right|
$$

0.9144

I

I•IOOO
3.4121 I. 0400
3.3324
2.9991

I 0157
0.9141

LOCAL OR FORMER SPECIAL VALUES.

French	aune (mes. anc.) . demitoise (mesures anc.)	$\begin{aligned} & 1 \cdot 3001 \\ & 1 \cdot 060 \end{aligned}$	$\begin{aligned} & 3.8992 \\ & 3 \cdot 1973 \end{aligned}$	$\begin{aligned} & \mathrm{r} \cdot 1884 \\ & 0.9745 \end{aligned}$
	aune métrique ($1812-1837$)			
$\begin{gathered} \mathrm{Stab} \\ \text { Bav } \end{gathered}$	of Waadt, Valais, and Rhenish ria (metric) .	I•3127	3.9704	1 2000
French	demitoise métrique (1812-1837)	I 0939	3.2809	1
Vara o	Aragon $=4$ quartas o palmos	0.8434	2.5296	0.7710
,,	Barcelona $=4$ palmos $=16$ quartos	0.8490	2.5460	0.7760
,"	Galicia	I•1874	3.5614	I 0855
,"	Valencia $=4$ palmos	0.9921	2.9757	0.9070
,,	Canary I.	0.9206	2.7609	- 8415
",	Cuba, Mexico, and La Plata	$0 \cdot 9277$	$2 \cdot 7822$	0.8480
"	Chili, Peru, and Manila	0.9272	$2 \cdot 7806$	0.8475
"	Curaçao	- 0.9274	$2 \cdot 7813$	0.8477
"	Brazil	I•1892	3.5663	1.0870
	Madeira I.	I 2005	$3 \cdot 6000$	1.097

Double-Cubits-continued.

ORIENTAL UNITS. Arabia :- Gaz of Mokha and Betel faghi. (An exceptional gaz that was	English Commercia Equivalent Yards . 0.6943 prubably a	English Scientific Equivalent. Feet $2 \cdot 0823$$\|$ oyal cubit.	$\left\lvert\, \begin{gathered} \text { French } \\ \text { Scientific } \\ \text { Equivalent. } \end{gathered}\right.$
Mesopotamia :-			
Gaz of Baghdad	0.8797	2'6382	0.8041
Hadid of Bassara	. 0.9500	2'8819	0.8784
Persia :-			
General value of zar' = 2 kadam (step)	- I•I377	3.4121	I 0400
Zar' of Yazd and Kirman	- 1.0666	$3 \cdot 1989$	$\bigcirc \cdot 9750$
Common geza	- 0.6893	$2 \cdot 0674$	0.6301
Royal geza	- I 0340	$3 \cdot 1011$	- 9.9452
Common arish	- 1.0636	3.1899	- 9723
Royal arish	- 0.8761	$2 \cdot 6274$	- $\cdot 8008$
Isfahan geza	- 1 -0401	3.1194	$0 \cdot 9508$
Bandarabbas geza	- 1.0756	3.2259	0.9832
Bandarabbas double cubit	. 1.0503	$3 \cdot 1500$	0.9601

SOUTH-INDIAN LOCAL UNITS.

The Imperial gaz or yard		2.9991	0.9141
Ahmadnaggar gaz $=1 \frac{3}{4}$ hath	-6806	2.0412	0.6222
Bangalur gaz $=2$ hath	1 '06II	24	0.9700
Baroda gaz $=24$ tassu	$0 \cdot 7535$	2.2599	88
Belgaum gaz $=24$ tassu	-0.9132	$2 \cdot 7387$	0.8348
Bombay gaz $=1 \frac{1}{2}$ hath	- 0.7500	$2 \cdot 2494$	0.6856
Calicut gaz	- 0.7889	2.3661	0.7211
Cambai gaz	- 0.7777	$2 \cdot 3325$	0.7109
Dharwar gaz	- 0.9042	2.7117	0.8265
Haidarabad (dakhan) gaz	- 0.9815	2.9436	0.8972
Jaulna (dakhan) gaz $=2$ hat	- 09333	$2 \cdot 7990$	0.8531
Malwa gaz	$0 \cdot 7777$	2.3325	0.7109
Masulipatam gaz $=2$ hath	I 06625	3.1866	- 09713
Palamkattah gaz	- I 0069	$3 \cdot 0198$	$0 \cdot 9204$
Seringapatam gujah	I 0694	3.2073	-0.9776
Surat cloth gaz $=24$ tassu	0.7685	$2 \cdot 3049$	$0 \cdot 7025$
,, artisans' gaz of 24 tassu	$0 \cdot 6666$	$1 \cdot 9992$	0.6094
, woodwork gaz $=20$ was	0.7246	2'2632	0.6898

Eastern Asia :-
See General Values.

THE PACE, OR DOUBLE STEP.

GENERAL VALUES.	English Commercial Equivalent. Pace	English Scientific Equivalent Feet	French Scientific Equivalent. Mètres
Pace of England and America $=5$ feet	1	4.9986	I 52350
The scientific value of the same at $32^{\circ} \mathrm{Fahr}$.	$1 \cdot 0003$	5	I 52395
Ordinary schritt, pace of Germany $=5$ Rheinfuss	1.0	$5 \cdot 1486$	1.56925
Geodetic schritt, pace of Germany $=$ 5 5016 Rheinfuss	$I \cdot 2157$	6.0770	I.85223
$\begin{aligned} & \text { Ancienne mesure, pas of France }=5 \text { pieds } \\ & \text { du roi } \end{aligned}$	I 0661	5.3289	I. 62420
Paso of Spain $=5$ pié	0.9134	4.5659	1.39167
Passo of Portugal = 5 pé.	I 0830	$5 \cdot 4135$	I. 6500
Switzerland, pace of 5 Bernese feet .	0.9624	4.8108	1 46628
Arab kathuah of 6 old feet $=\frac{1}{2}$ gassab	$1 \cdot 2602$	6.2993	1 9.9200
Chinese pu ${ }^{1}$ or pace $=5$ chih	1.0594	$5 \cdot 2955$	1.61405
Japanese ink or tattamy .	$1 \cdot 2472$	6.2337	19.9000
Sumatra gochih or depah of 4 cubits	1.2000	5.9983	I. 82826

FORMER SPECIAL OR LOCAL PACES AND STEPS.

Hamburg, ordinary double step, 4.8 local			
geodetic pace, $6 \cdot 535$ local feet	1.2157	6.0770	23
rne, pas forestier 3 feet step	$0 \cdot 5794$	2.8864	-0.87977
,, pas agraire, $2 \frac{1}{2}$ feet step	0.4812	2.4054	0.73314
Trieste, passo $=5$ feet	$1 \cdot 0439$	$5 \cdot 2178$	1-59036
Italian Passi :-			
Rome, 5 piede	- 97776	48869	8950
Tuscany, 3 bracci	I•1492	$5 \cdot 7442$	I 75080
Napoli, ${ }^{2} 7 \frac{1}{2}$ palmi before 1840 . ,, geodetic pace (of 1840) $=7$ palmi	$1 \cdot 2898$	6.4473	I 96511
geodetichi	1.2157	6.0770	15223
Venezia, 5 piede	I-1401	5.7044	173858
Bologna, 5 piede	I 2474	6.2353	1.90050
Milanese pace	1.0847	$5 \cdot 4220$	I 65260
French Antilles, pas agraire, $3 \frac{1}{2}$ feet step -	$\bigcirc \cdot 7463$	3.7302	I 1 13694
Ionian Islands, 5 feet (Venetian)	$1 \cdot 1401$	$5 \cdot 7044$	I 73868
Patras pace, 5 feet (Parisian)	I 0661	5.3288	I 62420

[^2]
FATHOMS.

GENERAL RATIOS.

$\left.\begin{array}{l} \text { England, Russia, } \\ \text { and India } \end{array}\right\}$	Fathom or Danda	$\left\{\begin{array}{l} =2 \mathrm{gaz} \\ =6 \text { local feet } \end{array}\right.$
Russia	Sasheen	$=7$ local feet
Germany, generally	\} Faden or klafter	= 6 local feet
Sweden Denmark		
Belgium	Famn or toise	$=6$ local feet
Holland		
Fl	$\{$ Toise	$=6$ local feet
F	Brasse marine	$=5$ local feet
Spain	$\{$ Estado	$=6$ local feet
Spain	\{ Braza, brazada	$=6 \mathrm{local}$ feet
Portugal	$\left\{\begin{array}{l}\text { Braça for soundings }\end{array}\right.$	$=5$ local feet
Italy genera	\{ Toesa or braça	$=2$ local varas
Italy ${ }^{\text {a }}$	Cavezzo or trabucco	$=6 \mathrm{local}$ feet
Switzerland	$\left\{\begin{array}{l}\text { Klafter or toise } \\ \text { also toise or perch }\end{array}\right.$	$=8$ local feet $=10$ local feet
China	Pu	$=5$ local feet
Japan	Ikje	= nearly 7 English feet
Thai (Siam)	Wa	$=4$ local cubits
Sumatra, Malacca, \&c.	Depah	$=4$ local cubits
Japan	Keng	$=6$ local feet
Anam	Ngu	$=5$ local cubits

LOCAL OR SPECIAL RATIOS.

Poland	Sazeen	$=6$ local feet
Savoy	Tesa	$=6$ local feet
Darmstadt	Klafter	$=10$ local feet
Prussia	Lachter	$=6 \frac{2}{3}$ local feet
Saxony	Lachter	$=7$ local feet
Bohemia	Dumpflachter	$=4$ Bohemian ells
Burgundy	$\}$ Toise	$\left\{=7 \frac{1}{2}\right.$ local feet
French provinces	$\}^{\text {Toise }}$	$\left\{=5 \frac{1}{2}\right.$ to 8 local feet, various
Canary Islands	Brazada	$=6 \frac{1}{2}$ local feet
Florence and Mantua	Cavezzo	$=6$ local bracci
Sardinia and Nice	Trabucco	$=12$ local spans
Naples	Bracciata	$=5$ French feet
Rome	Canna	$=8$ palmi
Naples	,	,,
Florence	,	,,
Nice	",	",
Malta	"	"

AGRARIAN LINEAR MEASURES.

GENERAL RATIOS.

RODS.
Rods of 10 local feet, or double paces.

Austro-Hungary	Denmark	Lothringen	China
Baden	Norway	Würtemburg	Prussia
Bavaria	Frankfurt	Zurich	England (new
Darmstadt	Elsass	Basel and Berne	decimal series)

Rods of about 12 local feet, or double fathoms.

Prussia		Arab gasab, 8 cubi	= 12 local feet
Franco	feet	Burmese dha, 7 royal cub.	$=12^{\prime} 10^{\prime \prime}$ English
Würzberg	fee	Sumatra tunga $\} 8$ cubits	
Anspach	2 f	Malacca jamba	
Constance		Guinea jaktan	12^{\prime} Eng. nearly
Spai		Turkish gasab	$=5 \frac{1}{2}$ arsheen

POLES, PERCHES, VERGES, \&c.
Poles of 15 local feet. Lithuania, Silesia, and Poland.

Poles of 16 local feet.

$\left.\begin{array}{l}\text { Aachen } \\ \text { Bremen, } \\ \text { Hamburg } \\ \text { Brunswick, } \\ \text { Hanover }\end{array}\right\}$	$\left.\begin{array}{l}\text { Coblentz } \\ \text { Cöln } \\ \text { Creveld } \\ \text { Dresden, } \\ \text { Leipsig }\end{array}\right\}$	Lippe-Detmold Luxemburg	Nuremberg Pomerania Laint Mecklenburg
Weimar			
Sweden			

Other poles of various values.

$\left.\begin{array}{l}\text { Dutch roede } \\ \text { Metric French perche }\end{array}\right\} 10$ mètres
(Old) Amsterdam, 13 local feet
(Old) Brussels, $16 \frac{1}{3}$ local feet
", also verge, 20 local feet
$\underset{\text { Waadt }}{\text { Baden ruthe }}\} 3$ mètres
Indian vansa, 10 local cubits
Malabar culey, 24 adye
Trichinopoly kolu, $21 \frac{1}{6}$ feet English
Anam Sao, 15 cubits

CORDS.
Old English cord or rope . $\quad . \quad . \quad . \quad . \quad 20$ or 25 feet
Brittany and Poitiers corde \quad.
Tours and other places in France \quad.
Spain, cuerda $=8 \frac{1}{4}$ varas $\quad . \quad . \quad . \quad . \quad 24$ Parisian feet
. $\quad . \quad . \quad . \quad 24 \frac{3}{4}$ Castilian feet

CHAINS.

England \quad (Older) (Newer)
\quad.
:---
Ramsden's chain of 100 feet or 10 rods
(in the series of decimal measures)

ACRE-SIDES:

Austrian joch-side	$=40$ klafter	$=240$ local feet
Baden, morgen-side	$=20$ ruthen	$=200$ local feet
Bavarian tagwerk-side	= 20 ruthen	$=200 \mathrm{local}$ feet
Darmstadt, morgen-side	$=20$ klafter	$=200$ local feet
England, cable (new series) century-side	or $=10$ chains	$=1000$ feet
France, hectare-side	$=5$ chains	$=100$ mètres
Mecklenberg, acre-side	10 ruthen	$=160$ local feet
Pjedmontese giornata-side	= 20 trabucchi	$=120$ local feet
Tyrolese starland-side	= 10 perches	$=100$ local feet
Spanish fanegada-side	= 96 varas	$=288$ local feet
cuadra-side	$=150$ varas	$=450$ local feet
Arabian feddan-side	$=2$ chains	$=240$ local feet
Sumatra, linear orlong	= 80 hailah (yards)	$=160$ cubits

A large number of countries possess rectangular land units of agrarian superficial measures, which do not afford an aliquot acre-side in feet, cubits, or yards.

ITINERARY MEASURES.

ORDINARY MILES, MILLIARIA, AND CORRESPONDING UNITS.

English statute mile $($ since 1824$)=8$ furlongs $=$
I760 yards $=1056$ paces I
The same, reduced to 32° Fahr.
Old London mile $=1000$ paces $=5000$ feet :
The same, reduced to 32° Fahr. . . .
Irish mile $=2240$ yards.
Scotch mile $=1984$ yards $=1920$ ells . . .
Scotch mile $=1984$ y Fetherlands, kilomètre
France, Italy, and the $=1000$ metres

- 0.6216

Old French mile $=1000$ toises . . . I 2114
Russia, werst $=500$ sasheen $=3500$ feet . . 0.6629
Spanish milla $=\mathbf{1 0 0 0}$ paces $=5000$ feet . . o.8650
Portuguese milha $=\frac{1}{3}$ legoa $=6236.37$ feet of 54
to a mean degree
Old Italian units. (See Geographical miles.)
Roman mile $=1000$ paces $=5000$ feet . . 0.9257
Milan mile $=1000$ passi I.027I
Venice mile $=\mathbf{1 0 0 0}$ passi. I 0807
Naples mile $=\mathbf{1 0 0 0}$ passi (before 1840) . . $\mathbf{I} \mathbf{1 9 6 9}$
Tuscan mile $=2833 \frac{1}{3}$ bracci $=566 \frac{2}{3}$ pertiche . 10278
Turkish berri. I.O361
Arab mile $=1000$ kathuah or paces . . . I•1934
Indian $\mathrm{kos}=2000 \mathrm{gaz}$ or yards
Chinese $\mathrm{li}=360$ paces $=1800$ feet (B. Works).
(See geodetic li) 0.3612

LEAGUES, STUNDEN, AND UER.

The old leagues of England, Spain, Portugal, the sea league of Holland, the Turkish agasha, the Arab farsakh or parasang, consisted of 3 miles
(See Miles and Milliaria.)
England, new league of the decimal system at $32^{\circ}=10000$ feet $=1000$ rods $=100$ chains $=10$ cables $=2$ old London miles . . . I•8945
France, old post-league $=2$ miles $=2000$ tois s . $\quad 2.4229$
Netherlands, old Amsterdam uer $=20000$ feet .
old Brussels uer 20000 feet 3593
Baden stunde $=148 \mathrm{I} 5$ feet $\quad .3 .279$
Bavarian stunde $=12703$ feet 2.3044
Anspach stunde $=14400$ feet 2.6823 ,

1	3.0479
$1 \cdot 2789$	$3 \cdot 898 \mathrm{I}$
1.8576	5.6621
1 18094	5.5150
$1 \cdot 4585$	4.4454
1-2164	$3 \cdot 7075$
1-4164	43171

LEAGUES, \&c.--continued.

Bohemian stunde $=\frac{1}{2}$ grossmeile

India, Maisur hardari $=6000$ gujah . . . 3.6458
Burmah, dain $=1000$ dha
Burmah, dain $=1000$ dha (rods)
Thai (Siam), roeneng $=$ roo sen (chains)
China, poû= $=$ oli .

- 2.4306

Japane . . . 3.6116 3.6116

Persia, farsakh $=6000 \mathrm{zar}$ 3.8785

		$\begin{aligned} & \text { did } \\ & \text { de } \\ & \text { y. } \\ & \text { Kil } \end{aligned}$
2.8783	${ }^{\text {1.5193 }}$	
	1.8231	
	115748	-80
	1.9245	
	$1 \cdot 2830$	
	1.3330	.0628
	$1 \cdot 9064$	$5 \cdot 8106$
	$1 \cdot 2838$	3.9129
	2.047	$6 \cdot 24$

STAGES, GROSSMEILEN, POSTMEILEN, \&c.

Danish miil $=4000$ favn			
Swedish mil $=6000$ famn	$6 \cdot 6427$	3.5064	10.6872
Russian or Polish meile $=8$ verst	5.3030	$2 \cdot 7992$	$8 \cdot 5321$
German meile $=20000$ Rheinfuss	$3 \cdot 9015$	2.0594	
Prussian postmeile (Danish)	$4 \cdot 6819$	$2 \cdot 4713$	
Baden meil $=2$ stunden	$5 \cdot 5261$	$2 \cdot 9169$	
Anspach mile $=2$ stunden	$5 \cdot 3666$	$2 \cdot 8328$	8.6342
Hanover postmeile $=25400$ feet	$4 \cdot 6099$	$2 \cdot 4333$	7
Saxony postmeile $=24000$ feet	4.22	$2 \cdot 2292$	6.7946
Silesia, Breslau mile $=22500$ feet	4.02	$2 \cdot 1257$	6.4790
Weimar mile $=26096$ feet	4.5740	$2 \cdot 4142$	5
Austro-Hungarian mile $=4000 \mathrm{klafter}$	47151	2.4889	7.5859
Old Hungarian mile	5•1806	$2 \cdot 7346$	$8 \cdot 3350$
Bohemian grossmeile	$5 \cdot 7567$	3.0385	$9 \cdot 2612$
Old Lithuanian mile	$5 \cdot 5264$	2.9170	8.8907
Old Livonian mile .	4.0636	$2 \cdot 1446$	$6 \cdot 5373$
Old Swiss mile	5•1937	2.7415	8.3559
Later Swiss mile $=24690$ feet ((netric)	$4 \cdot 6039$	2.4302	$7 \cdot 4070$
Indian kunch or stage $=10$ miles .	Io	$5 \cdot 278$	$6 \cdot 0886$

JOURNEYS, AND SPECIAL UNITS.

abia, marhala $=24$ miles $=8$ farsakh	11	83	46.0800
Persia, journey = 10 farsakh	$38 \cdot 7853$	20.4728	$62 \cdot 4000$
India, Maisur gavada $=4$ hardari	14.5833	7.6978	23.4625
	$10 \cdot 9375$	$5 \cdot 7734$	17.5969
Burma, uzena $=6400$ dha	-	5.9120	18.0193
Thai (Siam), yot $=4$ roeneng	Io.IOIO	8.2113 5	$25 \cdot 0267$ 16.2511
hina, $\operatorname{tsan}=8 \mathrm{pou}=80 \mathrm{li}$. 28.8930	15.2512	$46 \cdot 4846$

CHAPTER III.

MEASURES OF SURFACE.

Measures of surface may be generally divided into two classes.
I. Ordinary commercial and artisans' measures, from the square foot to the square fathom, or small measures of surface.
2. Land-measures, from the square pace to the acre and square mile, or large measures of surface.

Such measures have necessarily from their object a high range of values, and being mostly based on the squares of the various commercial, agrarian and itinerary linear measures, and their multiples, are in general accordance with them in any thoroughly systematised set of national measures ; but this principle sometimes holds only as regards the small units.

The land-measures or measures of ground were often originally based on other considerations. Usually a small land-measure, suited to measuring building-plots in town, an ordinary agrarian measure suited to arable land pasture and vineyards, and sometimes a large one suited to forest and marsh land and to large domains, seem to have been the original requirements. Some of the smaller land-measures were probably originally based on the space covered by some local temple or public building, or the space included in the court of such
buildings; the basic idea being evidently in many cases a rectangle of considerable length, and sometimes involving a superficial quantity that was not the square of any integral unit of length in common use ; in other cases, when the idea was taken from a square court, this anomaly did not occur.

The ordinary agrarian measure was based, in accordance with various motives, first, on the surface capable of being ploughed in a day by a man with a yoke of oxen ; secondly, on the surface capable of being advantageously sown with a certain weight or quantity of corn of some sort, naturally that most commonly grown in the country or region ; thirdly, a unit for pasture land, fixed in accordance with the number of cattle it might support by pasturage ; fourthly, a vineyard unit, based on the produce in wine measured by local measures of capacity, or on the surface tended in a day by the work of a single man.

The large land-measure may in some cases have been the extent of land that could be comprised within a periphery of strips cut from the hide of a single bullock; and in others a mere multiple of the local agrarian measure, or a local square mile or square itinerary measure.

All these original methods of determining a unit of surface caused much deviation from anything like uniformity of result ; and eventually, when such primitive units became systematised, they were both modified in accordance with each other and with the linear measures, and the squares of the linear measures of the system of the country.

Of the building-plot type are the Italian tavola, and the old tornatura, the European square perches, square ruthen, or square poles, of the small measures. Of the
agrarian type are the ploughing units, the Roman jugerum, the acres, tagwerk, journal, and morgen, the yugada and juchart, of arable measure ; also the sow.er's units, the ancient Egyptian series, bethcor, bethletech, bethsea, bethroba, and bethcab; the modern tunna and toendehartkorn, the cahizada, the fanegada; the stajo and starland of Italy and the Tyrol ; the vineyard units, the misura, and zappada, and the old French hommée, ouvrée, fossorée, poneur, and German tauen or thauen. Of the large land-measures are the haken and hufe of Germany and Poland, suited to large extent of forest country-corresponding to the ancient Roman centuria of 100 heredies or 200 jugera, and the Roman saltus of 4 centuriæ-the old English hide of 100 acres, now declared an illegal measure, and several ancient hides of other nations ; and lastly the square mile, or some topographic unit of that class.

The smallest of the commercial and artisans' measures that happens to be much used is the square foot, of which the square inch may be considered as a submultiple less frequently employed; while the largest of the land-measures is either a square mile or a hide of some sort.

THE SQUARE FOOT.

The square foot is in England a simple superficial unit about which there is no doubt or difficulty ; in some other European countries this simplicity does not exist. In Germany in many cases there were two and sometimes three sorts of feet in a single town, one for the ordinary purposes of commerce and of the artisan, a second exclusively for land-measure, and sometimes a third either specially for the carpenter, or the stone-
mason and builder : in fact, the foot as a unit was not thoroughly digested into the German system in all cases, but remained in its transition state, being a name for either a half-cubit or half-ell or for a submultiple of the pole or ruthe. In Italy and Switzerland this ambiguity is less frequent among the feet, but occurs among the cubits or bracci. Another cause of ambiguity in connection with the German feet is due to the mode of subdivision, and its nomenclature ; which is troublesome to an Englishman, for in England an inch is an inch, that is a twelfth in linear measure, but in Germany an inch may be either a tenth or a twelfth; hence a local inch may be one of six values at any one place, where there are three local feet, and both modes of subdivision. The same ambiguity extends to the square inch, which may be either the Iooth or the I44th part of any one of the three local square feet. The decimal inches are hence worthy of notice, as well as the nature of the work to which it is applied. In Sweden, Prussia, Darmstadt, Baden, and Würtemberg, and at some places in Switzerland, the decimal inch is more used. In Germany the inch zoll or daumen may also be the 8oth part of the lachter, and the square inch the 6400 th part of the square lachter.

In England decimal multiples and submultiples of the square foot are used without involving the misplaced term, inch ; they are exceedingly convenient in building, engineering, and surveying; the square of 100 square feet applied to roofing and flooring is one of these ; while 108.9 squares amount to a rood or a quarter of an acre; the rood being io890 square feet.

In Italy as well as in France, a measure of surface smaller than the square foot was formerly used, namely,
the square span, palmo quadrato or palme carré, a submultiple of the square canna. It was in Italy of 64 to the square canna; in France 81 to the square canna; in Sardinia, Sicily, and Pisa, 100 to the square canna; in a few places held some other ratio, and in others apparently was an independent unit ; but as the metric system has been long exclusively adopted in France and Italy these values are of little consequence ; the present linear Italian palmo is a decimetre, and the square palmo is a square decimètre. Similarly in the Netherlands, the palm and the vierkante palm have the same values.

But there are one or two marked exceptions where the former palmi formed sub-multiples of the land-measures, as in the stioro and quadrato of Tuscany, the moggio and carro of Naples, the rubbio and pezzo of Rome, and the starello of Sardinia. For these cases the values of the square spans or palmi are given in the tables at the end of this chapter, in addition to those of the square feet.

The following are places and provinces where special geometric land-feet or perch-feet are or were in use in addition to the ordinary or other foot.

Aachen.
Elsass.
Bavaria.
Electoral Hesse.
Poland.
Flanders.
Frankfurt-on-Main.
Genoa.
Lippe-Detmold.
Lippe-Schaumberg.

Lothringen.
Lucerne.
Mainz.
Nassau.
Neufchâtel.
Nuremberg
Piedmont.
Prussia.
Savoy.
Weimar.

THE SQUARE CUBIT,

The square cubit is in Germany a square ell, in Italy a square braccio, in Spain a square codo, and in Portugal a square covado, though in England an unused unit. When the German or Scandinavian ell happens to be equal to two local feet, the square ell of 4 square feet falls into the system of measures of surface; and may be also used as a unit of measure for flooring and roofing in construction, as well as for carpets and such things. The values of these square ells may be obtained by squaring the values of the linear ells given in the last chapter. The former square bracci of Italy correspond in this respect with regard to trade requirements, but, as they rarely have any convenient ratio to the square foot, and are besides long obsolete, are of less importance generally ; there are, however, one or two exceptions. A few of the very various land-measures of Italy are based on the square braccio, and not on the square foot ; such as the tavola, staro, and biolca of Parma, the saccata, stajolo, and the quadrato of Tuscany. The values of the square bracci that might be required for such cases are hence given in the tables at the end of this chapter.

The square codo, square codo de ribera, and square covado, are not necessary submultiples of the land-measures of Spain and Portugal, which are most frequently expressed as multiples of the square vara and estado, and sometimes of the estadal ; the covado of Portugal falls entirely outside the geometric measures.

The Oriental square cubits, or square pik, seem to be unfrequently submultiples of their land-measures, which are often either based on the square pace, in accordance with the natural mode of determining a surface by
pacing two sides of a mean rectangle, or of a mean square representing it, or are based on some square perch, gassab, or vansa, and in some instances on some local square chain, square fathom or square yard.

The Indian biggah is indifferently represented as a multiple of the square hāth (cubit) or of the square gaz (yard); and though the typical biggah (that of Bengal) is one of 80 cubits square (6400 square hāth), it is probably greatly due to the varieties of gaz and hāth, and the employment of either as basic units of landmeasure, that the biggahs of India present so great a variation in value.

It is as a rule most convenient to the English to represent these Indian biggahs as consisting of a certain number of square yards, but to the Indian, to deal with his more favourite unit, the hāth or cubit. But as both these units are understood by those races, and both have identical values, it becomes a matter of practical indifference.

The Arabian and Egyptian feddans are sometimes said to be based on the square cubit, and sometimes on the square pace ; and this seems to be correspondingly a matter of indifference. The Arab pace (or double step), named kathuah, is not a 5 -foot pace, but is a rather exceptional pace of about 6 feet-in fact, a fathomand is divided into 4 cubits of the type dera'a cabda, although it was anciently divided otherwise. It is, however, more convenient to treat the Arabian feddan as a multiple of the square kassaba, or square perch, 400 of which go to the feddan. The Egyptian feddans are of various values, and this is probably due to the variety of cubits employed as basic units for the gassab of two paces, and thus altering the value of the pace.

The Chinese cubit, which appears to be also termed a foot (chih) and divided decimally, is sometimes employed in commerce to the exclusion of the kambuchih; so that a second system of measures of both length and surface is probably based on this separate unit. The value of this linear cubit is $14 \frac{5}{8}$ English inches, or I.21875 feet, English, making the square cubit $=1.485$ feet, English.

THE SQUARE YARD.

The linear yard, and the corresponding vara of Spain and Portugal, the gaz and geza of Asia, remain unrepresented in the general measures of several European countries ; the aune and stab of France and Germany, also double cubits, are applied specially to cloth-measure ; and the passetto, or double cubit, of Italy is unfortunately confined to Tuscany alone. The mètre of the French metric system (originally a half-fathom) is, however, an approximate yard, adopted by several European nations, which supplies the deficiency. (Metric measures, forming a system of their own, will be treated under the head of systems of measures apart from the ordinary commercial measures.)

Existing square measures of this type generally are the highest of the commercial and artisans' measures, excepting when the square fathom, klafter, or toise is in common use; and the use of the square rod and square ruthe of England and Germany in connection with brickwork and masonry. They are sometimes, but not always, submultiples of the units of land-measure.

The values of the square yard and corresponding quantities are given in the tables.

THE SQUARE PACE.

The most expeditious and simple method of roughly measuring a plot of ground is to pace one side of an approximate square representing its area, or to pace two sides of a corresponding rectangle ; and the estimation by pace therefore developed into a similar more exact mode of dealing with the pace as a fixed unit, and the larger multiples of the square pace as well-defined units of land-measure.

The versus of the ancients was one of the earliest measures of this type known to us ; it consisted of 20 paces, or 100 feet square, or 400 square paces $=10000$ square feet; and it certainly appears unfortunate that the Romans did not adhere to it, as the jugerum type of land-measure has led to an infinity of very inconvenient land-measures over the whole of modern Europe.

The Chinese land-measure (the king) nominally is 60000 square feet, or 2400 square paces, but, practically it appears to have been a decimal multiple of the māo in the ordinary Chinese method, being equal to 10 māo, while the māo is described as a measure 16 paces long by 15 paces broad.

Several of the land-measures of modern Europe are based on the square pace; and some values of the square pace of various nations are hence given in the accompanying tables.

Among the land-measures based on the pace are the Venetian migliajo of 1000 square passi ; the misura of the Ionian Islands of 400 square paces, like the ancient versus ; the Neapolitan moggio of 900 square paces; and the multiples of these-the moggio of the Ionian Islands, and the carro of Naples.

The gochih or pointung of Sumatra is a pace corresponding to the Chinese pu , and the corresponding square unit is probably used in a similar manner.

THE SQUARE FATHOM.
Nations that do not possess a yard, double-ell, or some corresponding measure, generally make use of the fathom and its submultiples in building, construction, artisans' work, \&c. \&c., in the same way as the English yard is applied. The same principle also applies to the square faden, square klafter, square toise, square cavezzi and trabucchi, square sasheen ; and possibly also to the square depah, wa, chang, of Oriental nations.

In the preceding chapter the various corresponding linear units have been classified and valued, see pages $5 \mathrm{I}-68$; and it merely remains to give the values of the superficial units. Some of these square fathoms answer the purpose of a square rod, as basic units of landmeasure, thus rendering a square rod a needless unit in the system, or entirely supplanting it. The Italian and South-French square canne, of about or below 36 square feet may be treated as square fathoms, or as square paces, in accordance with their dimensions, nomenclature, and history.

The more important values of the square fathom are given in the tables attached to this chanter.

LAND MEASURES.

THE SQUARE ROD.
The square rod is the smallest measure of surface exclusively applied to land-measure. (See rod in Chapter II.) Taking the values of the linear rod at either Io or 12 feet, and the general limits applied to the linear pole at 14 to 25 local feet, the values of the square rod, and of the square pole, as general expressions representing units of surface anywhere, thus come between 100 and 144, and between 196 and 625 local square feet respectively.

The terms perch and square perch are expressions applied to many units of land-measure, both canes, rods, and poles, and even square chains ; but, taken philologically, the term ruthe, or rod, is a Teutonic and Scandinavian word, while the term perch is South-European, and perhaps purely Roman. The Roman pertica was the decempede, corresponding to the Greek, the Olympic, and the Phileterian $\dot{\alpha} \kappa \eta \dot{\eta} \eta$; all of which were dekapods or true rods of the strictest type-double paces. The Roman square pertica or square decempede of 100 square feet was a scruple, being the 24 th part of the ounce (uncia) or the 288 th of the jugerum, the basic unit, or as of gromatic measure. Many of the perches of Southern France and Italy were canes, half-rods, or fathoms, some were true rods, and a few Italian pertiche were by value chains. The perches of Northern France were Belgic, Flemish, or Norman units-properly poles or verges-to which the term perche was misapplied at some early date.

The square poles, though frequently considered as
mere nominal multiples of smaller units, square feet, square yards, or square fathoms, were probably by origin perfectly independent units of surface in most cases, and sometimes the feet of the system were modified or added to suit them as submultiples. Many square poles were also perhaps originally independent of the larger land-measures, though harmonised with them in the system at a later date.

Land-measures being usually arranged in a set of rather large multiples, a centesimal arrangement is particularly well suited to them ; hence the convenience of the square ruthe of so many places in Germany consisting in 100 square feet ; the are of 100 square mètres, and the hectare of 100 ares; a simple, primitive, and very ancient principle adopted in the versus of the ancients of 10,000 square feet, and in the Chinese decimal subdivision of the māo to the myriadth part. However inconvenient a rigid decimal system may be when applied to strictly commercial measures of capacity and of weight, where binary multiples and submultiples are almost necessary, it has great advantages both in land-measure and itinerary measure ; hence the convenience of reverting to the English square rod of ico square feet of the decimal scientific measures.

Square rods of 100 square feet are or were adopted at the following places and provinces:-

Altona.
Baden.
Basel.
Bavaria.
Berne.
Darmstadt.

Denmark and Norway.
Frankfurt (special foot).
Freiburg.
Halle.
Hesse (special foot). Lausanne.

Lippe-Detmold (special	Vaud.
foot).	Vienna.
Lothringen and Elsass.	Zurich.
Nassau.	Tyrol.
Poland (precikow).	Ancona, Bologna, and
Prussia (geom. foot).	Ferrara.
Würtemberg.	

The special and geometrical feet mentioned are special feet of land-measure in distinction to the werkfuss or werkschuh:

Square rods of 144 square feet are or were in use at the following places, countries, and provinces :-

Anspach.
Prussia (ord. foot).
Emden.
Franconia.
Nuremberg (spec. foot).
Würzburg and Ost Frise.

Spain.
Malacca:
Sumatra.
India.
Burma.
Some Italian tavole.

In Italy the tavola is often the smallest unit of landmeasure, corresponding to the square rod, and is generally $=4$ square cavezzi, or trabucchi $=144$ local square feet.

The exceptional tavole are those of Belluna and Treviso, which consist of 25 local square feet, and are $\frac{1}{12 \frac{1}{50}}$ th of the campo ; and those of Padua, Rovigo, Udine, Venice, and Verona, which consist of 36 local square feet, or are identical with the square cavezzo and are also sometimes termed square pertiche.

Returning to the Italian perches: some of them are neither subdivided into tavole nor square feet, as the
tavola and the square foot are sometimes non-existent. These exceptional cases are the Tuscan square pertiche, which consist of 25 square bracci (cubits) or of 100 square spans (palmi), and the Neapolitan pertiche. The square pertica of Naples itself is $56 \frac{1}{4}$ local square palmi, but the other Neapolitan square pertiche vary at almost every town, ranging between 49 and 60 square palmi, without being well-defined integral multiples.

THE SQUARE POLE.

Small square poles were the following :-
The old Amsterdam roede . . . 169 square feet. In Poland, Lithuania, and Silesia . I75 square feet. Gotha (feldruthe), Erfurt, and Fulda (Hesse) 196 square feet.

Square poles of the ordinary type, 256 square feet, were in use at the following places:-

Bremen.
Brunswick.
Coblenz.
Cöln and Creveld.
Gotha (waldruthe).
Hamburg.
Hanover.
Lippe-Detmold.
Lübeck.
Mainz.

Mecklenburg.
Neufchâtel (land-foot).
Neufchâtel (werk-foot) (vineyard).
Nuremberg.
Pomerania.
Rostock.
Saxony.
Stettin.
Weimar.

The juck or square pole of Oldenburg was 324 square feet. The square poles of the now obsolete land-measures of France, Belgium, and Holland were very various ; the most important were these :-

La perche carrée d'ordonnance . . 484 square feet La perche de Normandie . . . 484 "
La perche commune 400 "
La perche de Paris 324 "
La verge de Bruxelles . . . $266 \frac{7}{9}$ "
Also the English square pole . . $272 \frac{1}{4}$,
There were also Dutch, Flemish, and Belgian verges of $300 \frac{4}{9}, 336 \frac{1}{9}, 373 \frac{7}{9}, 400$, and $413 \frac{4}{9}$ square feet.

The present Nederlandsche vierkante roede is the square décamètre, 100 square mètres, or are of the metric system, while it is also a hundredth part of the bunder or hectare. (See Metric Systems.)

The square pole is among Northern and Scandinavian nations termed the geviert or quadrat ruthe, rode, or roede ; in Belgium and the north of France the verge carrée ; in southern Europe, including Southern France, the perche, or pertica, is either a rod, or a cane, or a chain-never a pole ; and it must be noticed that some of the Italian square perches consist of 96 square cavezzi, or square trabucchi, and are subdivided into 24 tavole ; they are then units corresponding to the square chain.

The English square pole of $272 \frac{1}{4}$ square feet or $30 \frac{1}{4}$ square yards is certainly inconvenient in value, both in this form and as being the rooth part of an acre, and the Io2400th part of the square mile ; but this inconvenience is frequently avoided by ignoring the pole, and expressing land-measure simply in acres and decimal parts, or in acres and square yards.

THE SQUARE CHAIN.

Formerly the English rood was probably quite distinct from the farthing-deal, or rectangular land-unit of 40 poles in length by one in breadth, forming the quarter of an acre, although they have been long synonymous and identical. The farthing-deal was always the fourth of the Anglo-Saxon acre, and connected with the pole ; but a rood is a relic of a former unit, probably based on the original rod of 10 feet, the former having some value near 10890 square feet, perhaps 10000 or 14400 , and the rod being io or 12 feet, the rood thus being ioo square rods. At such an epoch the rood was a convenient unit ; corresponding to what is now a square chain on Ramsden's system, and probably was by origin a square chain of some ancient system.

A square chain is one of the most natural and convenient units of land-measure, dependent neither on the reputed activity of a theoretic ploughman, nor the size of the sower's corn-barrel, but on the appliance of measurement. The English square chain (Ramsden's) of 10000 square feet is also convenient as a decimal unit, besides being nearly a rood or a quarter-acre.

The values of foreign square chains and units approximating to them, which have been much neglected by metrologists, are given in the tables.

> AGRARIAN MEASURES. ACRES, \&C.

The acre, or ploughman's unit of land-measure in England, is also the ordinary unit of land-measure for all purposes. Whether based on the Roman jugerum or not, it is a measure of the same type, representing
the amount of land a ploughman can plough in a day with a yoke of oxen. The other European measures of this type are-

The tagwerk of Germany.
The tagmatt of the Tyrol.
The juchart, or joch, of Austria, Bavaria, Würtemberg, Elsass, Switzerland, and the Tyrol.

The jour and journal, formerly used in France and Belgium.

The acre of Gotha, Mecklenburg, Ravensburg, Leipzig, Weimar, Cassel, Fulda, and Normandy.

The yugada of Spain. The pose of Switzerland. The giornata of Piedmont. The geira of Portugal.

Some other European land-measures may possibly belong to this type, although there may not be sufficient evidence to demonstrate it.

The German morgen and the French arpent, or at least some of them, appear to be measures corresponding to each other. The French arpent, derived from the ancient arepenna of Gaul, which was half a Roman jugerum, was probably at one time intended for a halfacre, andi, in a few cases, the German morgen was half a tagwerk. This distinction is, however, a thing of the past ; the varieties of both sorts of measure obliterating it and throwing both classes into one.

The quarter-acre, now termed in England a rood, but formerly a farthing-deal, ${ }^{1}$ had its analogous measures in Germany, France, and Italy, where quarters of some of the land-measures were termed vierling and vorling, quart and quartel, quarta and quartuccio ; also the fjer-dedels-tunneland of Sweden, and the quartillo of Spain.

[^3]The sower's units of land-measure, corresponding to various measures of capacity for grain, and representing the amount of land that could be advantageously sown with certain quantities of grain, are fortunately entirely unknown in England. The principle is, however, a very ancient one, adopted by the Egyptians before the Mosaic exodus. The European measures of this type are :-
$\left.\begin{array}{l}\text { The tunna or tunneland } \\ \text { The spannland }\end{array}\right\}$ of Sweden.
$\left.\begin{array}{l}\text { The toendehartkorn } \\ \text { The toendesœdeland }\end{array}\right\}$ of Denmark.
The skieppehartkorn)
The scheffel of Hamburg, Lübeck, Rostock, LippeDetmold, and Oldenburg.

The metze of Austria and Bohemia:
The moggio, rubbio, and scozzo of Italy, including
The stajo, staro, starello, and Nice and Piedseterée \quad mont.

The starland of the Tyrol, and the setine of Switzerland.

The imbuto and corbula of Sardinia.
The saccata of Tuscany; the bacile of modern Greece.

The fanegada and cahizada of Spain, and a very large variety of old French land-measures.

The almude or celemin of the Canary Islands.
The vineyard-units of land-measure are :-
The aranzada of Spain ; the thauen of Germany.
The zappada and moggio of the Ionian Islands, the fossorée of Switzerland, and, perhaps, the stremo of modern Greece, as well as several old French land-
measures, besides others that do not afford traces of their original formation or intention.

The other unassignable units of land-measure, which are either multiples or submultiples of the others, or were based on square and rectangular formation from linear measures, apart from any other object now evident, are :-

The album and penge of Denmark ; the cuadra and cuadra cuadrada of Spain and of South America; the biolca, campo, pezzo, migliajo, quadrato, tornatura, carro, zuoja, of Italy ; the stochiaca of Tyrol ; the biggah and kani of India; the orlong of Sumatra; the king and māo of China; the dessatina of Russia; the feddan of the Levant ; as well as others.

The relation of these ordinary land-measures to the small land-measures of square perches is very varied in different localities. The following small table gives the number of square perches to the acre, morgen, or tagwerk for some of the more important cases :-

Mecklenburg, and frequently for the old French
arpent IOO
Bremen, Brunswick, Hanover, Lippe-Detmold . 120
Gotha and Weimar I40
Franconia I44
Aachen, Bamberg, Cöln, Creveld, Hesse, Würtemberg, and Lothringen
$\left.\begin{array}{c}\text { England, Gotha, Coblenz, Frankfurt, Mayence, } \\ \text { Normandy, Nuremberg, and Würzburg }\end{array}\right\}$ Normandy, Nuremberg, and Würzburg $\int 160$
Erfurt I 68
Prussia and Würzburg I 80
Elsass 240
Baden (Constance) 260

Saxony (Leipzig), Lithuania, Poland, Pomerania, Silesia 300
Zurich 320
Oldenburg 356
Anspach, Basel, and Zurich 360
Würtemberg 384
Baden, Bavaria, Darmstadt, Würtemberg, Geneva 400
Hamburg, and occasionally near the Rhine . . 600
The ratios to the small measures of some of the former Italian land-measures, and those of countries other than France and the Netherlands, are given in the tables. The former land-measures of France were very numerous, intensely complicated, and varied much in value. The following is a rather incomplete list of them :-

Acre	Hommée	Port
Arpent	Jallois	Pugnère
Boisserée	Journée	Punière
Boisseau	Journal	Quartier
Bicherée	Jour	Quart
Carré	Latte	Quartel
Carreau	Mesure	Raie
Chaînée	Mesurée	Reges
Concade	Mine	Sadon
Corde	Minée	Salmée
Danrée	Mouée	Seterée
Eminée	GEuvre	Setier
Escat	Ouvrée	Seytive
Faucheur	Pauque	Sillon
Faux	Perche	Verge
Fossorée	Picotin	Vergée
Grande mesure	Place	Vertison

Some of these measures had several, and some many, values. The Belgian bunder had an infinity of values.

The perusal of such lists, and reflection on the confusion involved in the variety of their values, will demonstrate the cause of the avidity of the French, Belgians, and Italians for the metric system, which is specially well suited to land-measure, and will also show that no similar eagerness can be expected in a country like England, where there is only one acre, not only in the mother-country, but wherever English measures are used.

LARGE AGRARIAN UNITS. HIDES, \&C.

The hide was a large land-measure, consisting of 100 acres, formerly used in England, but now legally obsolete ; the measures of Germany and Poland, that are slightly analogous, are the haken and the hufe, or wloka.

The following are the ratios of these measures to the local morgen:-

Pomerania: haken=15 morgen, also termed the Wendische hufe, or Vandal hufe ; the priester-hufe of 20 morgen, the land-hufe of 30 morgen. Also the tripel-hufe of 3 haken, and the haeger-hufe of 4 haken.

Kenigsberg: the haken of 20 morgen and the hufe oi 30 morgen.

Berlin, Breslau, Danzig, Frankfurt-on-the-Main, and Hesse : the hufe of 30 morgen.

Mecklenburg: the hufe of 400 acres.
Poland: the haken of 20 morgow, and the hufe, or wloka of 30 morgow.

The domain-unit, or estate-unit, appears almost as necessary a part of a complete system as an agrarian unit; the English hide being now obsolete, its place may be supplied by the unit of the decimal system termed a century, in accordance with Roman nomenclature, which is equal to 100 square chains, or nearly the same number of roods. This unit also serves to complete the system, in other respects being a square cable, or the square of a cable 1000 feet long, and also the hundredth part of a square league of the same series.

TOPOGRAPHICAL MEASURES.

The square mile is a recognised superficial unit of surface in England, being exactly 640 acres. The square kilomètre of the metric system is in the same way an integral multiple of the hectare, and the Chinese square li an integral multiple of the mão and the king, but though some such relation may also exist in some other countries and places, it is comparatively rare. In some countries very large units are wanting, numerical multiples being used instead of determined units ; in others square geographical miles or leagues of various sorts are employed; but these are generally detached units, not coalescing in the general system.

The square league of the English decimal series consists of 100 centuries, or 10000 square chains (Ramsden's) ; and as the linear league $=2$ Old London miles of 5000 feet, the square league is 4 square miles of the Old London type. The series is hence complete in surface measure, is centesimal throughout, and has a wider scope than the French system, with which it is parallel. in some respects.

SQUARE FEET.

NATIONAL AND GENERAL.

The square foot of England, America, and
Russia, their colonies and dependencies, duod
The scientific value of the same at 32° Fahr. .
The square foot of Prussia, Norway, and Denmark .
The square geometric foot of Prussia for land The square foot of Sweden and Finland, dec. ${ }^{1}$ and duod. .
The square foot of the Austro-Hungarian Empire, dec. and duod.
The square foot of Spain generally, duod. .

FORMER, LOCAL, OR SPECIAL SQUARE FEET. Germany :-

Prussia, Imperial quadrat Rheinfuss geometric quadrat Feldfuss	$\begin{aligned} & \mathrm{I} \cdot 0609 \\ & \mathrm{I} \cdot 5277 \end{aligned}$	$\begin{aligned} & 1 \cdot 0603 \\ & 1.5269 \end{aligned}$	$\begin{array}{r} 9 \cdot 8504 \\ 14 \cdot 1846 \end{array}$
Anspach and Baireuth, duod. . .	- 0.9680	0.9674	8.9880
Altona and Hamburg, duod.	- 0.8440	0.8835	$8 \cdot 2077$
Baden, metric dec.	- $0 \cdot 9693$	0.9688	9.0000
Bavaria, dec. and duod.	- 0.9174	0.9169	$8 \cdot 5182$
Rhenish Bavaria, metric duod.	- I•I967	1-1960	II•III
Bremen, dec. and duod.	- 0.9008	$0 \cdot 9003$	$8 \cdot 3635$
Brunswick, duod.	- 0.877 I	0.8766	$8 \cdot 1432$
Cöln and Aschaffenberg	- 0.8909	0.890	$8 \cdot 2714$
Culm	- 0.8940	0.8935	$8 \cdot 3002$
Dantzig, duod.	- 08864	$0 \cdot 88$	$8 \cdot 2303$
Elsass (Stadtschuh)	-0.9008	$0 \cdot 90$	$8 \cdot 3637$
Elsass (Landschuh)	$\bigcirc \cdot 9373$	$0 \cdot 9$	$8 \cdot 7025$

SQUARE FEET-continued.
France:-
Pied du roi, Parisian square foot
Pied métrique (from 1812 to 1840)

Amsterdam, vierkante voet $=121$ v. duimen
Brussels, vierkante voet $=121$ v. duimen

Austro-Hungary :-

Imperial square foot, dec	
Bohemia, ", ",	
Galicia,	
Illyria, Trieste, square fo	
Moravia, square foot .	
Poland, Cracow square	
Silesia (Austrian), square	
Tyrol, square foot	
RusSIA :-	

$\begin{array}{llllll}\text { Imperial square foot, duod. } \\ \text { Lithuania } \\ \text {, } & \text { I } \\ \text { I }\end{array}$
Revel, , , 0.7618
Riga ," ,, o.8091

Pernau
Poland (Warsaw), square stopa, duod. . . .
0.8104
0.9612
$\begin{array}{cccc}\text { Poland (Warsaw), square stopa, duod. . } & \text { square precikuw, dec. } & 0.9612 \\ , " & 2 \cdot 100\end{array}$

0.8632
0.8190
0.8628
0.8185

1-0754
0.9456
0.9491
1.0890
0.9431
1-3673
$0 \cdot 9015$
1-2016
0.9994

1-1358
$0 \cdot 7613$
0.8086
0.8099
0.9606
2.0088
1.8057
2.0632
1.5552
2.3879
2.5163
$2 \cdot 3460$
2.0387
2.9449
$1 \cdot 3750$
3. 1929
2.3767
$1 \cdot 2627$
2.8412
3.0339
0.9552

1-2400
12991
$1 \cdot 2658$

PART I.

SQUARE FEET-continued. Spain :-			
Castile, square foot, duod.	- 0.8344	0.8339	77469
Aragon	0.7114	$0 \cdot 7110$	$6 \cdot 6049$
Valencia	$0 \cdot 9843$	0.9837	$9 \cdot 1385$
America			
Mexico, Buenos Ayres and Monte Video, Chili, Peru, La Havana, duod. (old value of the			
Pernambuco square foot, duod.	0.9947	0.9941	9.2355
Quebec (pied du roi, Parisian), duod.	365	111359	10.5521
India:-			
Malabar, square ady	0.7599	$0 \cdot 7593$	7.0534
China			
			10
Imperial survey of 1700, square chih	. 0167	1.0161	$9 \cdot 4396$
Square chih of the Tsing dynasty since 1644	I•0998	1 -0992	10.2112
Local values. ${ }^{1}$			
Canton customs, square chih $1 \cdot 3806 \quad 1 \cdot 3798 \quad 12.8184$			
Pekin palace ,, , . .	$1 \cdot 0795$	$1 \cdot 0789$	10.0227
,, imperial statistics square chih	1.0677	$1 \cdot 0671$	9.9132
", tribunal of math. ," ",	I•1952	1-1945	I I 0979
", board of works ", ",	1.0574	1.0568	9.8175
,, land	-15II	$1 \cdot 1504$	10.6875
Shanghai land revenue,	I 2065	$1 \cdot 2058$	11.2018
	I'7116	17106	15.8916
Special value of the square chih frequently used in land-measure as a sub-multiple of the mau,			
Japan :-			
Square shaku ordinary . ${ }^{\text {d }}$	-.9819	$0 \cdot 9813$	$9 \cdot 1167$
Special value, as a square land-foot, the myriadth			
Manila :-			
The Castilian square foot 0.8344		0.8339	7746
N.B.-Some of the old values of square fe through old Parisian measure, will not be exact given in metric or English terms.	t, ha squar	f be	educed

> SQUARE CUBITS.

SQUARE ELLS, SQUARE BRACCI, \& c .			
Square cubit, English half yard squared	2.250	2.249	9
Scientific value of the same at 32°	$2 \cdot 251$	$2 \cdot 250$	20.903
Square ell of Prussia, 4.5157 square feet	479	4.788	
Square ell of Norway and Denmark, 4 sc	4.2	$4 \cdot 241$	
Square ell of Sweden and Finland, 4	$3 \cdot 79$	3.794	
Square ell of Austria, not much used; replaced by the square klafter		6.535	15
Square codo ordinario of Spain, $2 \frac{1}{4}$ square f		$1 \cdot 8$	5
Square codo de ribera of Spain, 4 squ	3.338	3.336	
Square covado of Portugal, 4 square		$4 \cdot 6$	
Square covado do commercio, Portugal, 243 inches square	4.989	4.986	2
Square braccio of Tuscany, 4 square palmi square palmo of Tuscany		$\begin{aligned} & 3 \cdot 666 \\ & 0 \cdot 917 \end{aligned}$	$\begin{array}{r} 34 \div 059 \\ 8.515 \end{array}$
Square braccio di legno of Parma (this is also termed an agrarian foot)	$3 \cdot 166$	3	
Square braccio of Naples, $7 \frac{1}{9}$ squ	5.258	5.255	48.818
square palmo of Naples.	39	0.7	$6 \cdot 864$
Square braccio of Rome, 16 square paln	7.745	7740	71.910
square palmo of Rome, $\frac{9}{16}$ square foot	-538	0.538	4.992
Square arsheen of Russia, $5^{\frac{4}{9}}$ square feet	5.44	$5 \cdot 4$	50.54
Square pik endesa of Stambul	5.08	5.0	47.238
Square pik of Patras, Oran, Scio, and Jerusalem	5.069	$5 \cdot 066$	47.060
Square pik of Aleppo and Alexandretta	4.926	4.923	47.738
,, ,, endeza of Cairo	$4 \cdot 3$	$4 \cdot 386$	$40 \cdot 755$
,, ,, endeza of Alexandria	-282	4.279	39.753
,, ,", of Cyprus	$\cdot 857$	4854	45.098
,, ,, of Abyssinia		5.063	47.032
,", ,, of Bassara		$4 \cdot 877$	$45 \cdot 306$
Square hāth of India and Burmese taim, an Sumatra esto		$2 \cdot 249$	$20 \cdot 891$
Square sandang of Burmah	3.361	3.359	$31 \cdot 201$
Square cubit of commerce of China, also ter a foot ; decimally divided		1-486	

SQUARE DOUBLE CUBITS.

Square yards, mètres, varas, pasetti, \&c.

GENERAL VALUES.

Square yard of England and America, square gaz of India: 9 square feet, or 36 square cubits (hath), or 256 square nails.
The scientific value of the same at 32° Fahr.
Mètre carré of France, Holland, and Belgium, metro quadrato of Italy, \&c., divided decimally .
Vara cuadrada of Spain $=9$ pies cuad. $=\mathbf{2 5 6}$ avas cuad.
Vara cuadrada of Portugal $=9$ pes cuad. . . I $448 \mathrm{o} \mid 13.024$
FORMER, LOCAL, OR SPECIAL VALUES.
France:-

[^4]
THE SQUARE PACE.

GENERAL VALUES.

Square pace of England and America $=25$ square feet
The scientific value of the same at 32° Fahr. . I 0006
Square pace of Germany in ordinary quad. schritt $=25$ square Rheinfuss.
Square pace of Germany, geodetic quad. schritt $=42 \cdot 706$ square feet of Hamburg
Pas carré de France $=25$ pieds carrés de Paris
Pas carré of 25 pieds carrés métriques . . I-I 06
Paso cuadrado of Spain $=25$ square pies . . 0.8344
Passo cuadrado of Portugal $=25$ square pes . $I \cdot I 729$
Ionian Islands, 25 square feet (Venice) . . I 2998
Patras, 25 square feet (Paris) I I 365
Square pu^{1} of China, 25 square chih of the Board of Works .
Square gochih of Suratra, 25 square chih ; or depa, 16 square cubits

Sq. pace	Sq. feet	Mèt. car.
I	24:993	2.32II
I 00006	25	$2 \cdot 3217$
I 06009	$26 \cdot 508$	$2 \cdot 4626$
I 47777	36.930	3.4299
I•1365	28.396	2.6380
I•1967	29.901	$2 \cdot 7777$
- 08344	20.848	1.9367
I•1729	$29 \cdot 306$	$2 \cdot 7225$
I 2998	32.478	3.0172
I 1365	28.396	2.6380
I•I223	$28 \cdot 042$	$2 \cdot 6050$
1.4400	35'976	3.3420

FORMER, SPECIAL, OR LOCAL VALUES.

SQUARE FATHOMS.

Lachters, klafters, toises, sasheens, estados.

GENERAL VALUES.

English square fathom $=36$ square feet, rarely used 4
Value of the same at 32°. . . . 4.002336
Danish and Norwegian square favn $=36$ square feet

	888	34'152	
Prussian square klafter $=36$ square feet	2437	$38 \cdot 172$	$3 \cdot 546 \mathrm{r}$
square berglachter $=44 \frac{4}{9}$ square feet	$5 \cdot 2390$	$47 \cdot 134$	$4 \cdot 3778$
Austrian square klafter $=36$ square feet	$4 \cdot 3042$	38.715	$3 \cdot 5967$
Russian square sasheen $=49$ square feet	5.4444	48.972	4.5495
Spanish square estado $=36$ square feet	$3 \cdot 3375$	$30 \cdot 021$	$2 \cdot 7889$
Malacca and Sumatra square depah $=16 \mathrm{sq}$ cubits.	4	35.979	

FORMER, LOCAL, OR SPECIAL VALUES

Germany :-

Ba	$3 \cdot 6698$	33.009	3.0665
Bremen, geviert klafter $=36$ square feet	$3 \cdot 6031$	32.410	3.0109
Darmstadt, square werkklafter $=100$ square feet	$7 \cdot 4795$	67.277	$6 \cdot 2500$
Frankfurt, square klafter $=36$ square feet .	3.4899	$31 \cdot 391$	2.9162
Hamburg, square klafter $=36$ square feet.	3.5360	31.806	$2 \cdot 9548$
Hanover, square klafter $=36$ square feet	$3 \cdot 6732$	33:040	3-0694
Lothringen, toise carrée $=36$ square feet	3.5223	$31 \cdot 682$	$2 \cdot 9433$
Saxony, Dresden, square klafter $=36$ square feet	3.4530	31.059	$2 \cdot 8854$
Saxony, Leipzig, square klafter $=36$ square feet	3.4420	0	
Saxony, Leipzig, square lachter $=49$ square feet	$4 \cdot 6850$	$42 \cdot 141$	3.9149
Weimar, geviert klafter $=36$ square feet	3.4256	30.813	$2 \cdot 8625$
Würtemberg, geviert klafter $=36$ square feet	3.5360	31/806	$2 \cdot 9548$
SWITZERLAND			
Metric square toise $=100$ square feet	$10 \cdot 7704$	96.879	9
Berne, square klafter $=64$ square feet	$6 \cdot 5864$	59.243	037
Freiberg, square werkklafter $=100$ square feet	10.2919	92.574	$8 \cdot 6001$
Gent va, square toise $=64$ square feet	8.0818	72.695	6.7533

SQUARE FATHOMS-continued.

SWitzerlánd :-

Lausanne, square toise $=\mathbf{1 0 0}$ square feet .
Neufchâtel, square toise $=100$ square feet.
Neufchâtel, square toise for hay $=36$ square feet
Zürich, square klafter $=36$ square feet $\quad . \quad$.

France:-

Toise carrée ancienne $=36$ square feet
Toise carrée métrique $=36$ square feet . . $4^{\circ} 7869$.

Russia:-

Pernau square faden $=36$ square feet $\quad . \quad . \quad 3.2383$
Polish square sazen $=36$ square stopa
$29 \cdot 146$
Polish square sazen $=36$ square stopa $\quad: \quad .3 .5734$
Revel, square faden $=36$ square f et $\quad . \quad .33 .0483$
Riga, square faden $=36$ square feet . . . 3.2383
Italy :-
Turin, square tesa $=25$ square feet (p. manuale) 3.5100 Savoy, square tesa $=64$ square feet (Chambéri).

Bergamo
 Brescia

Cremona
Milan

Modena

$\begin{aligned} & \text { Modena } \\ & \text { Padua and Vicenza } \\ & \text { Piacenza }\end{aligned}$$\quad \begin{array}{r}\text { Italian square cavezz } \\ \text { P6 square feet }\end{array}$
Reggio
Trevisa
Venice

Tuscany, square cavezzo $=36$ square bracci
Sardinia, square trabucco $=144$ square palmi
Piedmont, square trabucco $=36$ square feet

Verona \quad. $\quad \begin{aligned} & 5.199 \\ & 5.066\end{aligned}$
$M+$ ntua, square cavezzo $=36$ square bracci \quad I $7 \cdot 858$
$\left\{\begin{array}{c} \\ \text { Italian square cavezzi of } \\ 36 \text { square feet } \\ \left\{\begin{array}{c}\text { vezzo }=36 \text { square bracci } \\ \text { vezzo }=36 \text { square bracci } \\ \text { bucco }=144 \text { square palmi }\end{array} .\right.\end{array}\right.$
. 14.673
. 11875

- II•372

Sq. yards

$10 \cdot 7704$. $10 \cdot 2919$ 3.7051 3.7051
3.874
France :-

Italy :-	
Turin, square tesa $=25$ square feet (p. manuale) 3.5100 Savoy, square tesa $=64$ square feet (Chambéri), 8.822	
Bergamo $)$ ¢ 8.257	
Brescia	$9 \cdot 558$
Cremona	10.071
Milan	$8 \cdot 160$
Modena	Italian square cavezzi of 1 II 786
$\left.\begin{array}{l}\text { Padua and Vicenza } \\ \text { Piacenza }\end{array}\right\}$	36 square feet
Piacenza Reggio	3 ($\left\lvert\, \begin{array}{r}9.513 \\ 12.143\end{array}\right.$
Trevisa	7-175
Venice	5•199
Verona J	5.066
M nntua, square cavez	$z 20=36$ square bracci . 77.858
Tuscany, square cavezzo $=36$ square bracci . 14.673	
Sardinia, square trabucco $=144$ square palmi . i 1.875	
Piedmont, square trabucco $=36$ square feet . II 372	

Sq. feet	Mèt. car.
96.879	
92.574	8.6001
$33 \cdot 327$	3.0961
34:876	3.2400
40.891	3'7988
$43 \cdot 057$	
$29 \cdot 146$	2.7060
32.142	2.9860
$27 \cdot 419$	$2 \cdot 5472$
$29 \cdot 146$	$2 \cdot 7060$
31.572	2.9330
79.358	$7 \cdot 3732$
74.28	6.900
$85 \cdot 97$.	7.986
90.59.	8:416
$73 \cdot 40$	6.818
106.01	9.849
$49 \cdot 50$	4.598
$85 \cdot 56$	7.949
09:33	10•147
64.54.	5.996
46.77	4.345
$45 \cdot 57$	4.232
150.62	14.922
131199	$12 \cdot 261$
106.81	9.923
102.29	$9 \cdot 502$

SQUARE RODS. ${ }^{1}$

GENERAL UNITS.

England and America, square rod of 100 square feet ; at 62° normal temp.
The same at the temperature of 32°. . .
Square rod of Denmark and Norway $=\mathbf{I} 00$ square feet.
Square stöng of Sweden $=100$ square fot .
Square rod of Prussia $=144$ square feet $=100$ geometric square feet .
Square rod of Austro-Hungary $=100$ square feet ; (superseded by the square klafter) .
Square estadal of Spain $=144$ square feet . .
Square gasab of Arabia $=144$ square feet.
Square dha of Burmah $=49$ square royal cubits.
Square jumba of Malacca
$\left.\begin{array}{l}\text { Square jumba of Nalacca } \\ \text { Square tung of Sumatra }\end{array}\right\}=64$ square cubits. 16.000
Square chang of China $=100$ square feet (B. Works)
Square jaktan of Guinea 16.014

12.47 I

Sq. yards Sq. rods

| II-III | 0.9994 |
| :--- | :--- | :--- |

II•I7
1

$11 \cdot 786$	$1 \cdot 0603$

$10.547 \quad 0.9487$
16.975
16.975
11.956

I3.350
$17 \cdot 646$
$18 \cdot 209$

- 492
$1 \cdot 1217$ $1 \cdot 4404$

French
Scientific
Equivalent.
Mèt. car.
9.2847
9.2900
9.8504
8.8130

14'18,6
9.9907

1I•1556
14 •7456
15.2913
13.3698
$10 \cdot 4206$
13.3810

LOCAL, FORMER, OR SPECIAL UNITS
 Germany :-

Prussian square rod $=144$ square feet						16.975	1.5269	$14 \cdot 1846$
Anspach	,"	$=144$				15.489	1.3932	12.9427
Baden	,,	$=100$				$10 \cdot 770$	$0 \cdot 9688$	9.0000
Bavaria	,',	$=\sim 100$				10•194	$0 \cdot 9169$	8.5182
Elsass		$=100$				$10 \cdot 009$	$0 \cdot 9003$	$8 \cdot 3637$
Hesse-Darmstadt, square rod = ioo square feet						7.479	$0 \cdot 6728$	6.2500
Holstein, square rod = ioo square feet						11.788	$1 \cdot 0603$	9.8504
Lothringen	,	$=100$,,			$9 \cdot 783$	0.8799	8.1754
Nürnberg	,,	$=144$,"			$15 \cdot 912$	$1 \cdot 3222$	13.2957
Würtemberg	"	= 100	"			9.822	0.8835	$8 \cdot 2077$

${ }^{1}$ For units greater than louble paces or double fathoms see Poles and Sqı are Poles.

SQUARE RODS-continued.

SWITZERLAND :-

Berne and Freiberg, square rod $=\mathbf{1 0 0}$ sq. ft.
Basel, square rod $=100$ square feet
Geneva,
Waadt, Valais, square $\mathrm{rod}=100$ square feet
Ziirich, square rod = 100 square feet . .
Belgium :-
Square rod $=100$ square feet (Brussels) . . 9.099
Austria :-
Cracow, sq. pretow $=100$ square stopa
Tyrolese square $\mathrm{rod}=\mathbf{1 0 0}$ square feet

Italy :-

(Former Tavole.)
Bergamo, tavola $=4$ square cavezzi $=144$ sq. ft. 33.03r
Cremona, tavola $=4$ square cavezzi $=144$ sq. $\mathrm{ft} . \quad 40 \cdot 286$
Milan, tavola $=4$ square cavezzi $=144$ sq. $\mathrm{ft} . \quad$. 32.639
Modena, tavola $=4$ square cavezzi $=144$ sq. ft. . $51 * 404$
Piacenza, tavola $=4$ square cavezzi $=144$ sq. ft.
Piedmont, tavola $=4$ square trabucchi $=\mathbf{I} 44$ sq.
feet, also termed a square pertica . . . 45.488

(Square Pertiche.)

Ancona square pertica $=100$ square feet . . $20 \cdot 075$
Bologna ,, ", " . 17.290
Ferrara $\quad, \quad, \quad,, \quad$. 19.518
Naples $\quad, \quad=56 \frac{1}{4}$ square palmi $\quad 4.622$
Parma $\quad, \quad=36$ square bracci. . $\mathbf{1 2 . 6 6 4}$
Tuscany ,, $=25$ square bresci. . $10 \cdot 190$
Venice, square pertica or tavola $=36$ sq. ft. . $5 \cdot 199$
Verona, square pertica or tavola $=36$ sq. ft. . 5.069

Sq. rods	Mèt. car.
0.9457	$8 \cdot 6000$
0.9981	9.2743
$0 \cdot 7269$	$6 \cdot 7533$
$0 \cdot 9688$	$9 \cdot 000$
$0 \cdot 9689$	9.0015
$0 \cdot 8185$	$7 \cdot 6038$
$1 \cdot 3673$	$12 \cdot 7021$
$1 \cdot 2016$	11.1630
$2 \cdot 9710$	$27 \cdot 6003$
3.6236	$33 \cdot 6632$
2.8358	27.2735
4.6237	39.3954
3.4339	3I•7946
4.0915	38.0095
$1 \cdot 8057$	16.7748
1.5552	14.4476
$1 \cdot 7556$	16.3098
0.4153	3.8617
1-1390	10.5814
$0 \cdot 9165$	$8 \cdot 5147$
0.4677	4.3447
$0 \cdot 4557$	4.2331

Some Italian square pertiche consist of 24 tavole or 96 square cavezzi. For these see Square Chains.

SQUARE POLES.

GENERAL VALUES.

LOCAL, FORMER, OR SPECIAL VALUES.
Giermany :-

B			
Brun		$2 \cdot 244$	20
Cöln $\quad, \quad=256$ square feet		2.305	21
Erfurt \quad, $=196$		$1 \cdot 691$	15
Gotha, square feldruthe $=196$ square feet.		1745 2	16
	$25 \cdot 343$	2.280	21
Hamburg, square marschruthe $=49$ squa	5	2.018 1.732	
eestruthe $=64$ squa	5.146	2.262	21.0116
Hanover, square ruthe $=64$ square ells	-	2.349	21.8268
Hesse, Electoral, square ruthe $=196$ square feet	1	1.711	
Lippe-Detmold, square ruthe $=256$ square feet .	$25 \cdot 679$	2:310	
Mecklenberg, square ruthe $=256$ square feet	25.943	2.334	
uirnberg, square ruthe $=256$ square feet .	$28 \cdot 287$	$2 \cdot 544$	
ldenberg, juck $=324$ square feet	34.067	3'064	
Saxe-Weimar, square ruthe $=256$ square feet	24.748	$2 \cdot 226$	
Saxony, Dresden, square ruthe $=256$ square feet	24.555	2.209	
,, Leipzig, square ruthe $=256$ square feet	24.476	2,202	
Silesia (Prussian), sq. ruthe $=225$ square feet .	$22 \cdot 327$	2.008	
Switzerland			
fchatel, common sq. perche $=245 \frac{1}{9}$ sq. feet . , for vineyards $=356$ square feet	61	$2 \cdot 272$	

SQUARE POLES—continued.

France:-
Perche car. $=\mathbf{2 5}$ toises car. (mes. usuelles)

Sq. yards 119.672
" de Paris $=324$ square feet . . 40.915
,, commune $=400$ square feet . . $50 \cdot 513$
", des eaux et forêts $=484$ sq. feet
Holland and Belgium :-

Amsterdam, vierkante roede $=169$ square feet. 16.2 IO
$\begin{aligned} & \text { Brussels, vierkante roede }=266 \frac{7}{9} \text { square feet } \quad .24 \cdot 276 \\ & \text { verge }==400 \text { square feet } \quad .26 .398\end{aligned}$
Austria :-
Silesian square ruthe $=225$ square feet . . 22.550
Russia:-
Warsaw, sq. pretow $=225$ square stopa . . 22.333
India:-
Bengal, kattah $=80$ square gaz $=16$ chittack $=$ 320 square hāth 8o
Madras, kuli $=64$ square gaz 64
Malabar, square kuli $=576$ square ady . . 48.655
Trichinopalli, square kolu 49780
Indian revenue gunta $=4$ square poles . . 121
Anam:-
Square sao $=9$ square $\mathrm{ngu}=225$ square cubits or thaoc

China :-
The fan of surface measure is the tenth of the mao, and $=24$ square pu (paces) or kung $=$ 600 square chih. (For values reduce from the mao, or square chih.)
Board of Works value of fan 74.825
Japan :-
$\mathrm{Ijje}=30 \mathrm{subo}$. 119.082

Mèt. car. 100 $34 \cdot 1887$ $42 \cdot 2083$ $5^{1 \cdot 0720}$
13.5452 $20 \cdot 2853$ $30 \cdot 4152$ $18 \cdot 8442$
18.6624

7.1959	$66 \cdot 8492$
5.7567	53.4836

$4.3765 \quad 40 \cdot 6572$
$4.4775 \quad 4 \mathrm{I} \cdot 5975$
10.8840
$5 \cdot 7567$
53.4836
$62 \cdot 5236$
$99 \cdot 5067$

SQUARE CHAINS AND ANAIogoUS UNITS.

GENERAL VALUES.

England, the rood $=40 \mathrm{sq}$. poles $=12 \mathrm{IO}$ sq. yds.
Scientific value of the rood at 32° Fahr. .
The Ramsden square chain of 10000 square feet $=100$ square rods
Its scientific value at 32° Fahr., the unit of the English decimal system
The Gunter's square chain of 484 square yards, or 16 square poles
Sweden, square ref $=100^{\circ}$ square stänger $=1000^{\circ}$ square fot
Germany, square chain $=10000$ square Rhein uss
Danzig, square seil $=\mathbf{2 2 5 0 0}$ square feet
Königsberg, square schnur $=22500$ square ft. .
France, Holland, Belgium, and Italy, square chain $=400$ mètres carrés
Bohemia, square waldseil $=1764$ square ells
Poland sq. weinbergseil $=4096$ square ells
Poland, square snurow $=22500$ square feet
Tyrol, starland $=10000$ square feet . . .
Spain, celemin $=768$ varas cuad.
Valencia, sq. cuerda $=1600$ sq. varas
Valencia, sq. cuerda $=1600$ sq. varas.\quad.
Naples, square catena $=64$ square passi . .
,$=$, also sq. catena $=100$ square passi
Rome, square catena ${ }^{1}=100$ square stajoli.
Rome, square catena ${ }^{1}=100$ square stajoli.
Bergamo, square pertica ${ }^{2}=96$ cavezzi quad.
$\begin{array}{llll}\text { Cremona } \\ \text { Milan } & ,, & ,,\end{array}$

Piacenza	", ",	
Greece, Ionian	,$"$,	

Greece, Ionian Islands," misura $=3$ " zappade $=$ 10000 square feet $=400$ square paces
Arabia, square chain = IOO square gassab.
India, sq. tenab $=2500$ sq. gaz (yards) $\dot{\text {, }}$ square jarib $=3600$ square gaz illahi, of ,, square jarib $=3600$ square gaz illahi, of
Thai (Siam), sq. sen $=400$ sq. wa (fathoms)
China, square $y u=100$ square chang $=10000$ square chih.
Japan, ittau = ro ijje

Roods	Sq. ch.	Ares
1	1.0884	10'ilic
I 0006	1-0890	10'1168
0.9183	0.9994	$9 \cdot 2847$
0.9188	1	9.2900
0.4000	$0 \cdot 4354$	4*0444
0.8716	0.9487	8.8130
- 0.9742	$1 \cdot 0603$	9.8504
I.8315	1.9934	18.5182
2•1069	$2 \cdot 2930$	2I•3022
- 33956	0.4306	
- 6155	$0 \cdot 6699$	6.2232
14292	1.5555	14.4502
I 8458	2.0088	$18 \cdot 6624$
I•104I	$1 \cdot 2017$	If.1630
0.5296	0.5764	5.3547
I 3696	1-4906	I 3.8474
0.2444	$0 \cdot 2661$	2.4715
$0 \cdot 3825$	$0 \cdot 4157$	$3 \cdot 8617$
- 1633	$0 \cdot 1777$	I 66508
$0 \cdot 655 \mathrm{I}$	$0 \cdot 7130$	$6 \cdot 624 \mathrm{I}$
$0 \cdot 7991$	0.8697	8.5792
$0 \cdot 6474$	$0 \cdot 7046$	$6 \cdot 5456$
$\bigcirc \cdot 7547$	0.8214	$7 \cdot 6307$
I•1936	1-2991	12.0687
I 4588	1.5873	14.7456
$2 \cdot 0661$	$2 \cdot 2487$	20.8902
$2 \cdot 5$	$2 \cdot 7210$	25.2775
I 6325	17768	16.5061
I 0.34 I	$1 \cdot 1217$	10.4206
$0 \cdot 9841$	$1 \cdot 0711$	9*9507

${ }_{2}^{1}$ This small unit is termed a chain, though corresponding in value to a large pole,
${ }^{2}$ These are very exceptional pertiche.

LAND MEASURES, ACRES, Soc.

GENERAL VALUES.

England, America, and parts of India: acre $=4$ roods $=160$ square poles $=4840$ square yards. The scientific value of the same at 32° Fahr. Sweden: tunnland $=218 \frac{3}{4}$ square poles $=56000$ square feet $=2$ spannland $=8$ fjerdingar. Denmark: toendehartkorn $=2240$ square rods $=$ 2 toende-soedeland $=224000$ square feet Prussia : morgen $=180$ sq. rds. $=25920$ sq. ft. France, Holland, Belgium, and Italy: hectare $=100$ ares $=10000$ mèt. carrés ; . ettaro or tornatura $=100$ tavole ; nederlandsche bunder $=$ 100 vierkante roeden . Austro-Hungarian Empire : joch or jochart $=3$ metzen $=576$ square rods $=\mathbf{I} 600$ square klafter $=57600$ square feet Russia: dessätina $=2400$ square sasheen $=$ 117600 square feet Spain: fanegada $=\mathbf{1 2}$ celemin $=576$ estadales cuad. $=92$ I 6 varas cuad. Portugal : geira $=4840$ varas cuad. Greece: Ionian I., moggic $=24$ zappade $=3200$ square paces $=8$ misure $=80000$ square feet Arabian feddan $=400$ square rods $=57600$ sq. ft . (also used in Turkey and Egypt). Malacca and Anam : sq. orlong or mao $=400$ sq. jamba $=1600$ sq. depa (fathoms) $=100$ sq. sao China : king ${ }^{1}=10$ mao $=6$ square $\mathrm{yu}(\mathrm{B}$. of W.) Common king $=10$ mao Shanghai king $=10$ mao Macao king = I 0 mao . Canton ling $=10$ mao. Japan ichchu $=10 \mathrm{ittau}=100 \mathrm{ijje}$.

1	4,3535	$0 \cdot 4044$
I 0006	4 3560	0.4047
I 22203	5•3125	0.4935
$5 \cdot 4557$	$23 \cdot 7513$	$2 \cdot 2065$
0.6313	$2 \cdot 7484$	$\bigcirc \cdot 2553$
2.4726	$10 \cdot 7643$	I
I 4222	6.1945	- 0.5755
$2 \cdot 6997$	117532	1.0919
I. 5888	$6 \cdot 9167$	$0 \cdot 6426$
144480	6.3040	0.5856
$2 \cdot 3919$	10.4130	0.9674
144584	6.3490	0.5898
I-3223	57567	0.5.48
1-5512	67302	0.6252
I 6495	7.1810	0.6671
I 6666	7.2560	$0 \cdot 6741$
$2 \cdot 098$ I	9.1341	0.8486
$2 \cdot 0631$	8.9817	0.8344
2.4604	$10 \cdot 7112$	0.9951

FORMER, IOCAL, OR SPECIAL VALUES.

Germany :-		Local sq. ft.			
Prussian morgen	$=180 \mathrm{sq}$. rods	25920	0.6313	$2 \cdot 7484$	- 2.2553
Anspach	$=400$	51840	I•152I	$5 \cdot 0155$	$0 \cdot 4659$
Baden	$=400$	40000	0.890I	3.8751	0.3600
Bavaria, tagwerk	$=400$	40000	$0 \cdot 8425$	$3 \cdot 6677$	- 03407

${ }^{2}$ The king is also considered ten times these values, or $=100$ mao.

ACRES-continued.

The old units varied excessively in value.

ACRES-continued.

Austro-Hungary :-

Austrian juch $=3$ metzen $=576$ square rods 1600 square klafter $=57600$ square feet .
Tyrolese jauchart =1000 square klafter $=36000$ square feet of Vienna
Botzen, tagmatt $=4$ starland $=5$ grabe $=400$ square rods $=40000$ square feet . . ${ }^{\circ}$.
Polish morgow $=300$ square pretow $=67500$ square feet $=3$ square snurow

Spain :-
Ordinary fanegada $=9216$ square varas . . 1×5888
Small fanegada $=8000$ square varas . . . $1 \cdot 3792$
Aranzada $=6400$ square varas
Valencian cahizada $=6$ Valencian fanegadas
Valencian yugada $=6$ cahizadas
Canary I., fanegada $=600 \mathrm{sq}$. brasadas .. . 0.4935

Italy :-

Bologna, biolca $=196$ sq. rods
Ferrara , $=400$,, . 40000
Modena,$=72$ tavole . 10368

$\begin{aligned} \text { Venice, campo } & =640 \text { tavole } \\ ,, \quad \text { migliajo } & =\text { rooo sq. passi }\end{aligned}$
Verona, campo $=720$ tavole
Local
sq. ft.
$\begin{array}{llll}\text { Piedmont, moggio }=96 & ,, & \cdot & 13824 \\ \text { giornata }=100 & , & \\ 14400\end{array}$
Lombardy, tornatura $=100$ metric tavole .
Naples, moggio $=900$ square passi . . . 0.8393
$\begin{array}{cc}\text { Rome, rubbio }=112 & \text { square catene } 4.5705 \\ ,,, ~ q u a r t o ~ & 28\end{array}$
Sardinia, starello $=576$ square rods . . . 0.9814
Tuscany, quadrato $=400 \quad, \quad,, \quad . \quad . \quad 0 \cdot 842 \mathrm{I}$," saccata $=660 \quad,, \quad, \quad$.

India :-

Bengal, biggah $=20$ kattah	.		1600	0.3306
Benares and Ghazipur, biggah	.	.	3136	0.6479
Northern India, biggah	.	.	.	3025
0.6250				
Orissa, biggah
Tirhut	4840	1		
Iadras, kani $=$ I00 kuli	.	.	.	4225
0.8729				
Bombay, biggah $=20$ pund	.	.	6400	1.3223

1.4392	0.1337
2.8208	0.2620
2.7209	0.2528
4.3535	0.4044
3.8003	0.3530
5.5667	0.5348
3.0637	0.2845

LARGE LAND MEASURES, HIDES, foc.

GENERAL VALUES.			
England : the (obsolete) hide $=100$	I	or cent.	$40 \cdot 444$
England : the century of the decimal scientific system $=1$ square cable $=100$ square chains $=$ IOOOO square rods = 100000 square feet			
I'russian haken $=20$ morgen	$0 \cdot 1263$	0.5497	
,, \quad hufe $=30$	-1894	0.8245	
,, grosshufe $=66 \frac{2}{2}$ morgen	9	1-8322	17.0215
Pomeranian haken $=15$,,	$0 \cdot 243 \mathrm{I}$	$1 \cdot 0583$	9.8312
, \quad landhufe $=30$, ,	$0 \cdot 4862$	$2 \cdot 1165$	19.6623
,, hæger hufe $=60$ morgen	$0 \cdot 9723$	42330	$39 \cdot 3246$
Mecklenberg hufe $=400$ acker .	$2 \cdot 1441$	9.3342	$86 \cdot 7145$
Rostock hufe $=450$ acker $=600$ scheffeln	$2 \cdot 4121$	$10 \cdot 5010$	97-5538
Spain : yugada $=50$ fanegadas.	- 7944	3.4584	$32 \cdot 128 \mathrm{I}$
Polish : haken = 20 morgow	0.2769	$1 \cdot 2053$	II•1974
", hufe or wloka $=30$ morgow .	0.4153	188080	16.7962
Bombay chahar $=120$ biggah	0.7037	$3 \cdot 6764$	$34^{1} 532$

SQUARE MILES AND SQUARE LEAGUES.

England: square statute mile $=64$ square furlongs $=640$ acres .			
er square London mile $=2500$ square chains 62° Fahr.			
London square mile $=2500$ square chains at 32°	0.8	0.25	
ondon square league of the decimal scientific system $=100$ centuries or square cables $=$ IOOOO square chains $=4$ square London miles			
rance : kilomètre carré $=100$ hectares mille itinéraire car. $=\mathrm{I}$ million toises		$0 \cdot 1$	
car.			
rance : lieue de poste car. $=4$ milles	$5 \cdot 87$		
Germany : square postmeile (Danish)	21.9201	$6 \cdot 1075$	
square geographic meile (of 15 to I°)	$21 \cdot 2069$	5	
(geogr. of $17 \frac{1}{2}$ to I°)	$15 \cdot 5806$	4	
1 : legoa cuad. (geogr. of 18 to I°)	4.727	4.1033	
4		0.3598	

CHAPTER IV.

CUBIC MEASURES AND UNITS OF CUBICITY.

THE principal distinction between measures of capacity and cubic measures, as regards their origin, consists in the former having been deduced from measures of weight and the latter from the cubes of linear measures in common use. In a perfect system of measures, the whole fall into unison, and become corresponding in every respect.

The attempt to carry out this principle to perfection was made in the design and operations for laying down the metric system. A litre, the basic unit of capacity, was to be cubic décimètre ; and the measures of weight were to be based on the weight of water contained in the litre. Practically one kilogram, the 'kilogramme des archives,' was actually made to equal as near as possible the weight of a litre of water at 39° Fahrenheit, or 4° Centigrade; but as the standard temperature for the metric system was 0° Centigrade or 32° Fahrenheit, the anomaly of the vessel being required at one temperature, and the water at another, prevented its being done with actual precision ; and hence computation had to be depended on for making allowance to suit the case. Since then, that kilogram, whether right or faulty, has been enshrined, secluded strictly from public gaze, and
not even weighed in water by scientific men in private on account of some alleged deterioration that might occur owing to a supposed presence of soluble arsenic in the platinum ; hence its density is unknown. This cannot be termed a very scientific basis for measures of weight, though doubtless well suited to public veneration ; yet the standard metric weights of Europe are copies of an inexact copy of this kilogram. The ancient Egyptians may have built pyramids as mural standards of measure, the Romans may have laboriously adapted the Greek and the Egyptian measures to practical purposes and wants ; were the English to reconstruct their metrical system they would scientifically weigh a cubic yard, or at least a cubic foot of water, but the French alone would make a single miserable cubic décimètre weight of such pretensions, borrow decimalisation from the Chinese, and propagate the result by presents of Sèvres vases, large medals, and sentiments of mutual admiration.

One kilogram, however, being thus made, the litre has ever since not been a cubic décimètre, but a measure of capacity containing such a kilogram-weight of distilled water at its maximum density. In other words the French eventually fell back on the old system of making their measures of capacity in accordance with their measures of weight ; in the same way as in England the gallon was made to contain ten pounds' weight of distilled water. There would apparently have been no necessity for this abandonment of intention, if the temperature of 4° Centigrade had been adopted as the standard for the system throughout.

The cubic measures of a system may hence be distinct from the measures of capacity, both in origin and in
fact. This is more especially the case in England where the measures of capacity are based on the legal idea that a cubic foot of water weighs 62.321 pounds of water at the temperature of 62° Fahrenheit-a value believed to be incorrect; so that there are two causes of departure affecting the two series as regards unison and uniformity.

In England, therefore, we have a standard gallon and a standard cubic foot based on linear measures that are not in accordance ; and in order to compare the sets of measures dependent on each of them with real accuracy, we must assume some approximately correct weight of a cubic foot of water either at 62° Fahrenheit, or at 39° Fahrenheit and at 32° Fahrenheit.

Taking the values as nearly as can be possibly deduced from Miller's results (See 'Philosophical Transactions,' 1856), they are :-

There is, however, another legal definition of an English gallon, namely, that it contains 277.274 cubic inches ; while a cubic inch of water weighed in air was also declared to weigh 252.458 grains at a temperature of 62° Fahrenheit and a barometric pressure of 30 inches.

If this side of the matter be taken in preference to the other, and the advantages of the law be made use of, the bushel then becomes 2218.192 cubic inches; and on this basis the cubic measures and the measures of capacity may be compared in one system. Any error will then be thrown into the weight, and into the whole of
the series of English commercial measures of weight ; this will be treated in a succeeding chapter.

Having thus arrived by a legal subterfuge at a single system of measures, formed by the coalition of the capacity and the cubic measures, it may be first noticed that the whole English series is comparatively small, extending from the minim to the bushel in capacity, and to the cubic yard in cubic measure ; everything beyond this, such as a vat, a barrel, \&c., being a calculated and a numerical rather than an actual practical measure ; and it may secondly be remarked that the capacity-measures are mostly those of ordinary retail and trade and simple commerce, while the cubic measures are mostly those of technical business and work involving skilled or technical labour.

In Germany, under their old system-which appeared to be intended to suit every special branch to the utmost-there were not only decimal feet and decimal perches to suit the land-surveyor, and the cubic foot, klafter, and rod to suit artisan's work ; there was also the berglachter system of measures to suit mining operations. The berglachter, or lachter of about a fathom, was taken as the unit, and a complete system based on it, both in Prussia and Saxony. There were thus sometimes four systems co-existent, one based on the foot for ordinary purposes, one on the ruthe and its decimal submultiples through a special land-foot, a partial system on the ell, and another on the common klafter, and on the lachter.

The unity of the English cubic measures is in striking contrast to these, in a manner exactly corresponding to the singleness of the English land-measures, contrasted with the multifarious old land-measures of France.

CUBIC MEASURES.

Among all European nations that possess a linear foct as a measure, the cubic foot forms a cubic measure. Its decimal subdivision into thousandths, and its duodecimal subdivision in 1728 cubic inches, are both convenient, when used so as not to interfere with each other or cause confusion ; and either one method or the other, or both, appear to be adopted indifferently.

The independent ell, not forming any simple multiple of the foot, is seldom cubed ; and when the ell is a simple multiple, the numerical advance in point of measure is so small as not to render it very useful ; hence it is only when the foot is unknown or little used that the cubit, or ell, becomes sufficiently important to be cubed and used in cubic measure.

The cubic yard, or cube of a double cubit, exists in England and America, in Spain and Portugal, and in India; other nations being deficient in this useful natural unit, with the sole exception of the Florentine passetto, a double cubit now declared to be obsolete. Its place is supplied by the mètre of the French metric system, and the cubic mètre; its decimal subdivision has the advantage of convenience in numerical calculation in large numbers, but not so in small differences, as cubic quantities increase very rapidly with the cubes of the corresponding linear dimensions; the subdivision into 27 cubic feet is certainly more convenient for this; latter reason ; and the cubic foot thus forms a fresh point of departure. The absence of any cubic foot, or measure corresponding to a cubic foot, is hence a marked defect in a system, which is not compensated by any measure near the cube of a tenth of a yard, or any
cubic décimètre. In fact, the entire absence of the cubic yard itself would not be so serious, as its place might be well supplied either by decimal multiples of the cubit foot, or by submultiples of the cubic fathom.

The cubic fathom, klafter or lachter, toise, favn, braza or estado, is necessarily most used by nations that do not possess a cubic yard of any sort. The fathom, originally the embrace of the outstretched arms, or about the height of a man, is a measure of about 6 , or from 5 to 7 feet, and is usually an aliquot or multiple. The cubic fathom hence is generally either 216 or 343 cubic feet in a series of measures; the exceptions being the large cubic werkklafter, lachter, berglachter, and cubic toise of Prussia, Darmstadt, and Switzerland, which are decimal multiples of the cubic foot, or of some special cubic foot, and are fixed at 1000 cubic feet. However convenient these may be for purposes of numerical calculation, they are not, strictly speaking, cubic fathoms, but fall in the next higher class of measure-cubic rods.

The cubic rod, or cube of the rod of land-measure, is sometimes supplemented in German measures by a special cubic rod adapted to artisans' work, masonry, and building, and these, when real cubic rods of either sort, are multiples of the cubic foot in one class or the other. In England the real cubic rod is hardly ever mentioned as such-multiples of the cubic yard, or of the cubic foot, being used instead ; but a nominal rod of brickwork, a cubic measure formed on a square pole of surface by a thickness of a brick and a half of such bricks as are most commonly used, is still used; it is a mere term for about 306 cubic feet, or $1 \mathrm{I} \frac{1}{3}$ cubic yards of brickwork in walling. Corresponding measures of this type of parallelopipedon are, or were, used in

Germany and France; of these the following are instances :-

The Prussian schachtruthe is a square rod by a foot of thickness, and is 144 cubic feet in masonry and earthwork.

The Prussian feldsteinruthe is a term for 120 cubic feet.

In Saxony the cubic rod for ashlar is $7 \frac{1}{2}$ ells long $\times 8$ broad $\times \mathrm{I} \frac{1}{2}$ high, or 90 cubic ells $=720$ cubic feet.

At Frankfurt-on-the-Main there are two cubic rods, the ordinary one 12 feet long $\times 6$ broad $\times 4$ high $=288$ cubic feet ; the mason's rod 12 feet long \times I 3 broad $\times 2$ high $=312$ cubic feet.

In Hesse there are two rods, the ordinary one of 12 feet long $\times 6$ broad $\times 4$ high $=288$ cubic feet ; the mason's rod is 144 cubic feet only.

In France there were, besides the real toise-cube of 216 cubic feet, the cubic measure known as the toise-toisepied of 36 cubic feet, and the toise-toise-pouce of 3 cubic feet.

It may be noticed that such contrived measures were peculiar to countries that did not possess a cubic yard measure, and served a useful purpose under such purposes. In England there is no excuse for the retention of the nominal rod of brickwork as a measure of $11 \frac{1}{3}$ cubic yards, as brickwork, being dependent on the chancesize of a burnt brick, the uniformity of the bricks, the size of the mortar joints and the shrinkage of the work, does not demand a specially exact measure, and can be estimated in cubic yards or cubic feet. Units of fuelmeasure, stacks and cords, are most frequently incongruous ; their values range from the cubic yard to the cubic fathom, mostly between 40 and 200 local cubic
feet. Tons by bulk are from 40 to 60 cubic feet in value. A few special loads, voies, carrate are also cubic units. The English ton of 40 cubic feet is an excellent unit for binary subdivision, and would serve well as a basis for rearrangement of capacity-measures down to the bushel or the cubic foot.

The extremes of cubic measure, hence, are the cubic inch and the cubic rod ; and the arrangement of the measures between these two extremes is diversely effected in accordance with local habit, both in accordance with the preferred linear units and the mode of subdivision adopted. The natural subdivision based on the ordinary values of linear measures is thus:-

1 728 cubic inches $=1$ cubic foot ; 27 cubic feet $=1$ cubic yard ; 216 cubic feet or 8 cubic yards $=1$ cubic fathom ;
and if we take the one typical value of the linear rod, the double fathom, then-

> 1728 cubic feet $=64$ cubic yards $=8$ cubic fathoms
> $=$ I cubic double fathom $;$
and there becomes a binary subd́ivision throughout exactly corresponding to that of the cubic foot into cubic inches; this typical arrangement was adopted in Prussia, in some parts of Germany, and in Spain, while the corresponding principle was applied to some square measures in Italy, the tavola being often a square of 12 feet or 144 feet. Such is the typical and natural binary mode of subdividing cubic measures, which possesses great advantages in continual halving. The other mode of subdivision is decimal, any of these measures being taken as a basis. Taking the other typical value of the linear rod used by the Romans, Greeks, Arabs, and

Egyptians, which is more natural, the double pace of 10 feet, then--

I cubic $\mathrm{rod}=1000$ cubic feet; and 1 cubic foot $=1000$ fluid ounces.

The cubic foot, being the most intermediate measure is the most convenient for several reasons, as the thousandth of a cubic foot is near $1 \frac{3}{4}$ cubic inch (1728); and a thousand cubic feet is a measure nearly 37 cubic yards, being 37.037 cubic yards, or 4.64 cubic fathoms. Also with the English cubic foot, the thousandth part has the additional advantage of very closely representing the quantity of water that weighs an ounce.

Decimalisation on the cubic yard, the cubic fathom, and the cubic inch would have less practical convenience, as the thousands and the thousandths or mils, which are the important points in a system of cubic measures, do not fall in useful positions.

The relations existing between the English cubic units, inches and feet, that is both of the binary and of the decimal scale, and the units of capacity are shown in small comparative tables, following on pages 119122: these clearly demonstrate the superior advantage of the foot and decimal-ounce units. While considering the position of these various units of cubicity with regard to each other, it becomes also imperative to notice their position with regard to corresponding English units of weight, and more especia!ly in the lower part of the scale, applied in the compounding of the druggist, and in the smaller operations of the scientific chemist, analyst, and experimentalist in natural science.

Small English Units.-The thousandth part of a cubic foot of water weighs nearly an ounce, and it would be well if the ounce were very slightly adjusted
to be exactly in correspondence ; also the fluid-ounce is a legal measure of capacity, containing an ounceweight of water, a permanent binding connection between the measures of weight and of capacity that is convenient, like that of the cubic foot and the footweight.

The fluid-nunce is divided into 480 minims, and the ounce-weight into 437.5 grains, and hence a minim is not a grain-weight of water. Also the fluid-ounce is divided into 8 fluid-drams, while the ounce-weight is divided into dram-weights of two sorts, one the commercial dram, which is the sixteenth of the ounce, or 27.344 grains, the other, the medical dram of 60 grains, neither of which correspond to the weight of a fluid-dram of water; thus the English small measures of capacity below the fluid-ounce are at present neither convenient in their relation to cubic measure, nor in connection with measures of weight.

This anomalous arrangement will doubtless be eventually swept away and adjusted, not by lapse of time, but by someone that possesses the courage, ability, and influence necessary to have it done. Probably the best plan would be the following :-
I. To make the ounce and the fluid-ounce exactly the Ioooth of the foot-weight and the cubic foot of present English measures.
2. To subdivide both this ounce and this fluid-ounce into ten drams and fluid-drams, also into 400 grains and fluid-grains respectively.
3. Te abolish the whole of the old avoirdupois units, and substitute for them the corresponding English units which differ from them very slightly, only $\frac{-3}{10}$ per cent.

The attached small tables illustrate the connection of the decimal submultiples of the cubic foot and of the
cubic inch with the existing series of small measures of capacity and of weight.

Comparison of Small Measures of Capacity with those of Cubic Measures and of Weight.

By Subdivision of the Cubic Foot.

Cubic Measure		Capacity	Weight
Cub. ft. after adjustment	Cub. ft. legal measure	Minims	Grains
$\left.\begin{array}{c} \text { oo I cub. ft. } \\ \text { or rooo mils } \end{array}\right\}$	1003	I fluid-oz. (480 m.)	$\left\{\begin{array}{c} \text { I ounce-weight } \\ (4375 \text { grs. }) \end{array}\right.$
137.2 mils	1 37.6	(65.826 minims)	I medical dram (60 grs.)
${ }^{12} 25^{\text {mils }}$	I. 25.4	I fl.-dram (60 m.)	54.69 grains drm.
62.5 mils	62.68	(30 minims)	```I commercial drm. (27.344 grs.)```
2.286 mils	$2 \cdot 293$	(r.0971 minims)	1 grain
$2.08 \dot{3} \mathrm{mils}$	$2 \cdot 089$	1 minim	009115 grain
I mil	1.003	(0.48 m.)	0.4375 grain

By Subdivision of the Cubic Incin.

Cubic Measure		Capacity	Weight
Cubic inches after adjustment I.728	Cubic inches legal measure ェ7329	$\frac{\text { Minims }}{\text { ء fluid-oz. }(480 \mathrm{~m} .)}$	Grains I ounce weight ($4377^{\circ} \mathrm{grs}$.)
	I	0.577 fluid-oz. (276.9 m .)	$\begin{aligned} & 0.577 \text { oz. } \quad(252.4 \\ & \text { grs. }) \end{aligned}$
0.2238	O'2377	$(65.826 \mathrm{~m}$.	I medical dram (60 grs.)
0.216	0.2166	r fl.-dram (60 m.)	(54.69 grs.)
- 103	$0 \cdot 1083$	(30 m .)	I commrcl. dram (27.34 grs.)
0.00373	0.00396	(r*097.1 minim)	1 grain
0.0034	0.00361	I minim	(0.9115 grs.)

From these it will be seen that these measures are in ill-accordance with the cubic inch, both at present, and even under the supposition that the ounce be adjusted so as to be made exactly to the weight of ioooth part of a cubic foot of water; but under this latter supposition the fluid-dram is exactly 125 myriadths of a cubic foot, and the myriadth of a cubic foot is nearly half a minim, 048 minim-a convenient relation that now holds good approximately. There is no such convenient relation between the cubic measures and the existing grain or its decimal multiples: the advantage of correspondence being solely in the cubic foot and the ounce.

Continental nations generally have no small measures of capacity, such as minims and fluid-drams, as they compound simply by weight in their old measures ; the adoption of the metric system which has a cubic centimètre, about one-fourth of the English fluid-dram, is hence a considerable advantage to them in this respect.

Large English Units.

The accordance between the English cubic measures and the large measures of capacity as well as with those of weight is almost as unfortunate as in the case of the very small measures; in fact nowhere, excepting at the fluid-ounce and ounce-weight, and at the cubic foot and foot-weight, is there any identity of principle.

The legal capacity of the gallon is 277.274 cubic inches, and the legal weight of a gallon of water is 10 pounds ; the gallon being the standard English unit of capacity on which the whole of the rest of the capacitymeasures are based. These form an excellent binary series from the bushel down to the quarter-gill, and are
hence thoroughly adapted to commercial purposes ; but from the basic unit, the gallon, being in ill-accordance with the cubic measures, the whole series suffers in the way already explained.

One approximation to adjustment which now exists, and may hereafter be made perfect, is the connection through the fluid-ounce and ounce-weight.

The gallon consists of 8 pints, the pint of 20 fluidounces; hence, as the gallon is 277.274 cubic inches, the ounce is its $160 t h$ part, or is 1.7329 cubic inches, which is very nearly 1.728 cubic inches, or the Ioooth of a cubic foot. Taking it at exactly that value, the gallon would proportionately become 276.48 cubic inches, or $0 \cdot 160$ cubic foot exactly; and the whole series of measures of capacity would then be in accordance with cubic-measure as a result of the small adjustment of 0.003 per unit, or $\frac{3}{10}$ ths per cent. evenly throughout the whole.

Although this is doubtless a matter of the future, and not of the present, as regards the fact, it is yet now a convenient mode of arriving through calculation from cubic measure to capacity-measures and the converse, which is in itself important, whether the adjustment of the $\frac{3}{10}$ ths be made at an early date, in the dim future, or never.

The legal equivalents of the English measures of capacity, from the quarter to the pint, as well as the weights of water they contain, are given in the attached table. There are still higher measures, the wey or load of 5 quarters, and the last of 10 quarters, which constitute an unfortunate departure from a nearly perfect binary system ; there are also subdivisions on the binary scale, from the pint down to the quarter-gill of $I_{\frac{1}{4}}^{\frac{1}{4}}$ fluid-
ounces ; thus making in all I4 measures of a strictly binary formation, which are perhaps unequalled anywhere as regards their commercial convenience, although not yet scientifically adjusted to cubic measure.

Comparison of the Larger Measures of Capacity with Cubic Measure and Weight.

In addition to the natural cubic measures before referred to, which in England do not go beyond the cubic yard, there are terms of cubic measure that are convenient multiples of the cubic yard, or of the cubic foot ; such as the various loads, lasts, and tons of measurement which are not to be confused with the lasts, loads, and tuns of capacity, the latter being multiples of the bushel or of the gallon.

The real cubic measures are mostly fuel and wond measures, and shipping tons, as before mentioned. Even some of the old English measures of capacity were deter-

[^5]mined in cubic measure, although they may have been originally based on weight of corn or of flour. The Winchester bushel was $2150 \frac{1}{2}$ cubic inches, and the Winchester gallon was $274 \frac{1}{4}$ cubic inches ; the Elizabethan ale-gallon was 282 cubic inches, and the Queen Annian wine-gallon 231 cubic inches. The present gallon of 277.27384357 cubic inches is an invention dating only from the reorganisation of 1825 .

The inherent defect of the present English capacity measures is that they are dependent on an old French avoirdupois pound, which cannot coalesce in the English measures without some slight alteration. Beyond that there is the anomalous two-temperature standard under which weight and capacity are compared.

Foreign Units.

While the English cubic measures are not in strict accordance with the commercial measures of capacity, the same may be said of a very great number of cubic measures of other nations. The fact that the litre is no longer a cubic décimètre in reality, but is a measure of capacity containing a kilogram weight of water, in accordance with a primitive kilogram of unknown density, has been already mentioned. The Russians, in the same way as the English, have hitherto conformed their measures of capacity to those of weight ; thus their vedro of liquid measure is 30 local pounds of water and their tschetverik 64 pounds. The Turkish fortin and the kiloz are based on weight of wheat, the former being 2 canthars, the latter 22 oka, and the alma is 8 oka of oil. The Iberian almudes and arrobas are now nominally based on weight of water in some cases and on weight
of oil in others ; formerly they were Arab or Moorish makuk and waebe, or true cubic measures of another series, which cannot coalesce with the cubic units of the Visigoths and Suevi. It cannot, therefore, be expected that measures of capacity formed on this principle, and rigidly adhered to, can be in strict accordance and uniformity with the cubes of the linear measures of the nation, until some mode of adjustment be adopted to effect a real systematisation. It seems that this habit of neglecting the accordance between cubic and capacitymeasures is not only unscientific, but is a marked evidence of a want of ordinary civilisation.

The ancient Egyptians, the Chaldæans, the Assyrians, the Persians, the Ptolemaic Egyptians, and the Greeks, all deduced their weights from their cubic measures and subdivided large cubic measures to form small measures of capacity, when they required them ; although there is no doubt that Oriental nations did not much use capacity-measures, and preferred buying and selling almost everything by weight ; but the mode of making measures of capacity to suit old foreign units of weight, without considering their relation to true local cubic measure, is a proceeding suited to savage tribes, destitute of apparatus, appliances, and scientific men.

The whole series of Swedish units of capacity are actual cubic units (see Swedish system).

The Prussians and the Danes, as well as some of the former German nationalities, regulated their measures of capacity by cubic measure, as may be seen by the attached table giving the values.

Equivalents of Measures of Capacity in Local Cubic measure.

Danish pot or krug	$\frac{1}{32}$ of a cubic foo
Danish kanne	108 cubic inches
Danish bushel	972 cubic inches
Danish corn-barrel	$4 \frac{1}{2}$ cubic feet
Danish tar-barrel	$3 \frac{3}{4}$ cubic feet
Danish grain last	99 cubic feet
Prussian scheffel	3072 cubic inches
Prussian eimer	3840 cubic inches
Prussian beer-barrel	6400 cubic inches
Prussian malter	$21 \frac{1}{3}$ cubic feet
Lubeck scheffel	2343 cubic inches
Lippe-Detmold scheffel	3554 cubic inches
Bavarian scheffel	8944 cubic inches
Dresden scheffel	8064 cubic inches
Gotha bergscheffel for coal	2920 cubic inches
Bavarian schankeimer for wine	2580 cubic inches
Castilian fanega	4440 cubic inches

Zurich grain malter, $12 \frac{1}{4}$ cubic feet ; vegetable malter, $12 \frac{7}{8}$ cubic feet; lime malter, 12 cubic feet; charcoal malter, $27 \frac{1}{2}$ cubic feet.

In other parts of Europe the cases of capacitymeasures in strict accordance with cubic measure are detached and comparatively rare ; most of them are based on weight, the weight-units being generally old, borrowed, and foreign ; thus preventing these national collections of units from being perfect in systematisation, or deserving of being named systems.

In Oriental countries capacity-measures hardly exist, or are comparatively rare. In Pagan countries, capacitymeasures are mostly based on weight of grain, and
sometimes are deductions from weighing several sorts of grain ; in some places they do not exist, but are supplanted by direct weight ; and in very few, such as Thai (Siam), Anam, and one or two other cases, they are correctly formed on local cubic measure.

The very marked distinction between foreign measures of capacity that are truly cubic or otherwise is important ; it has, however, not been preserved in the tables, all nominal measures of capacity being classified together for the sake of convenience in reference.

CUBIC INCHES, DECIMAL CUBIC INCHES, AND DECIMAL FLUID-OUNCES

GENERAL VALUES.

	Cub.		
	I	0.57	
entific value of the same at $32^{\circ} \mathrm{Fah}$	009	0.5787	
luid-ounce of the English decimal measures, or the roooth of the cubic foot at $32^{\circ} \mathrm{Fahr}$.			
cimal cubic tum of Swe		0.924	
Cubic inch of Prussia, Norway, and Denmark, duod. .		$0 \cdot 6$	
ubic inch of Austro-Hungary	I 1162	0.6454	
ecimal kubikzoll of Austro-Hungary	9288	115	
ubic inch of Spain, duod.	7622	0.4407	
Portugal,		0.7345	
ubic tsun of China (Board of Works) dec.	$2 \cdot$	$1 \cdot 1$	33

FORMER, LOCAL, OR SPECIAL VALUES.
Germany:-

Baden and Nassau, decimal and metric		I 6491	$0 \cdot 9535$	27.0000
Bavaria, decimal		I.5185	$0 \cdot 8780$	24.8611
,, duodecimal		0.8788	$0 \cdot 5081$	14.3872
Brunswick, duod.		0.8213	0.4749	13.4468
Bremen, decimal (also the duod.)		1.4773	0.8542	$24 \cdot 1870$
Gotha, duod.		- 0.8410	$0 \cdot 4863$	137691
Hanover, duod.		0.8800	$0 \cdot 5088$	14.4074
Hesse-Darmstadt, decimal and metric		- 0.9544	0.5518	15.6250
Hamburg, duod.		0.8312	$0 \cdot 4806$	$13 \cdot 6077$
Mecklenberg, duod.		0.8710	0.5036	14.2605
Oldenberg, duod.		0.9194	0.5322	15.0692
Saxony, Dresden duod.		$0 \cdot 8020$	$0 \cdot 4638$	13.1312
,, Leipzig duod.		- 7982	0.4615	13.0686
Würtemlerg, decimal		I 4362	0.8304	23.5142
Swiss (Waadt) decimal and metric		I•6491	$0 \cdot 9535$	27.0000
France:-				
Pouce cube (mesures usuelles) duod.	netric	1.3091	$0 \cdot 7570$	21.431
Parisian pouce cube, duod.		I2117	$0 \cdot 7006$	19.8364
Holland and Belgium				
Amsterdam, kubieke duim (undec.).		I.0413	$0 \cdot 6021$	17.0479
Brussels, kubieke duim (undec.)		0.9622	0.5563	157532

For other values, decimalise on the equivalents of the cubic feet.

CUBIC FEET.

GENERAL VALUES.

The cubic foot of England, America, and Russia, and their dependencies, duod. $=1728$ cubic inches
The scientific value of the same at 32° Fahr. $=1000$ decimal fluid-ounces, decimal . .
The cubic foot of Prussia, Norway, and Denmark .
The cubic foot of Sweden and Finland (formerly duod.), decimal
The cubic foot of Austro-Hungary, dec. and duod.
The cubic foot of Spain, duod. . . .
The cubic foot of Portugal, duod. . .
The cubic foot of the Chinese Empire, decimal (the Board of Works' kambuchih)

I	$0 \cdot 9991$	28.2909
I 00009	1	$28 \cdot 3153$
1-0928	1-0918	$30 \cdot 9158$
$0 \cdot 9248$	0.9240	$26 \cdot 1629$
I'1962	$1 \cdot 1153$	31-5790
0.7622	$0 \cdot 7615$	21.5623
$1 \cdot 2703$	$1 \cdot 2692$	35.9370
1.1890	$1+1879$	$33 \cdot 6391$

FORMER, LOCAL, OR SPECIAL CUBIC FEET.

Germany:-

CUBIC FEET-continued.

CUBIC YARDS, METRES, STAB, VARAS, \&oc.

GENERAL VALUES.

FORMER LOCAL, OR SPECIAL VALUES.

France:-

NOMINAL UNITS FOR SPECIAL PURPOSES.

UNITS OF WOOD-FUEL MEASURE.

GENERAL AND FORMER

LOCAL VALUES.

England, the stack, $\mathrm{I} \times \mathrm{I} \times 4=4 \mathrm{c}$. yards . 108

$$
" \text { the cord, } 4^{\prime} \times 4^{\prime} \times 8^{\prime}=128 \mathrm{c} \text {. feet }
$$

Denmark, ${ }^{1}$ favn for fuel, $3 \times 3 \times \mathbf{1}=9$ cub. alen
Sweden, ${ }^{1}$ famn for fuel, $3 \times 3 \times 1 \frac{1}{2}=13 \frac{1}{2}$ cub. åln
Prussia, holzfaden, $3 \times 3 \times \mathrm{I}=9 \mathrm{kub}$. ellen .
haufen, $18^{\prime} \times 9^{\prime} \times 3^{\prime}=486 \mathrm{kub}$. f. $\quad 53 \mathrm{~m}^{\circ}$
Baden, holzklafter, $6^{\prime} \times 6^{\prime} \times 4^{\prime}=144 \mathrm{c}$. f. . .
Bavari, haklarter, $6^{\prime} \times 6^{\prime} \times 3^{1 \prime}=126$ c. f.
Bremen, holzfaden $=72 \mathrm{kub}$. fuss
Brunswick, malter, $33^{\frac{1}{6}} \times 4^{\prime} \times 4 \frac{3^{\prime}}{4}=60 \frac{1}{6} \mathrm{c}$. ft .
klafter, $6 \frac{1^{\prime}}{3} \times 4^{\prime} \times 4 \frac{3^{\prime}}{4}=120 \frac{1}{3}$ c. feet .
Breslau, holzstoss, $10 \times 5 \times 1 \frac{1}{2}=75$ c. ells . . $550 \cdot 94$
Coblenz, holzfaden $=192 \mathrm{c}$. ft.
Darmstadt, stecken, $4^{\prime} \times 5^{\prime} \times 5^{\prime}=100 \mathrm{c} . \mathrm{ft}$. . $55^{\circ} 23$
Frankfurt, stecken, $3 \frac{1}{2}^{\frac{1}{2}} \times 3 \frac{1}{2} \times 3 \frac{1}{2}=42 \frac{7}{8} \mathrm{c}$. ft. vilber $34^{.94}$
, \quad gilbert $=2$ stecken $=85 \frac{3}{4} \mathrm{c} . \mathrm{ft}$. . ${ }^{\text {a }}$.
Gotha, charcoal malter, $3 \frac{1^{\prime}}{2} \times 3 \frac{1^{\prime}}{2} \times 3 \frac{1^{\prime}}{2}=42 \frac{7}{8} \mathrm{c}$. ft. $\quad 36.06$
Gotha, holzklafter, $6^{\prime} \wedge 6^{\prime} \times 3^{\prime}=108 \mathrm{c}$. ft. . . $90 \cdot 83$
Hamburg, ${ }^{1}$ holzfaden, $6_{3^{\prime}} \times 66_{3}^{2 \prime} \times 2^{\prime}=88 \frac{8}{9} \mathrm{c}$. ft. .
Holstein, holzfaden, $6 \times 6^{\prime} \times 2^{\prime}=72 \mathrm{c}$. ft. . . $59 \cdot 84$
Nassau, holzklafter, $6^{\prime} \times 6^{\prime} \times 4^{\prime}=144 \mathrm{c}$. ft. . 137.43
Mecklenburg, holzklafter, $7^{\prime} \times 7^{\prime} \times \mathbf{2}^{\prime}=98 \mathrm{c}$. ft. .
Mainz, stecken, $4 \frac{1^{\prime}}{3} \times 4 \frac{1}{3} \times 3^{\prime}=56 \frac{1}{3} \mathrm{c}$. ft. . . 47.32
Saxony, Leipzig klafter, $6^{\prime} \times 6^{\prime} \times 3 \frac{1}{2}=126 \mathrm{c} . \mathrm{ft}$.
Saxony, schragen $=3$ holzklafter $=378 \mathrm{c}$. feet
Würtemberg, scheitholzklafter, $6^{\prime} \times 6^{\prime} \times 4^{\prime}=144$
c. ft. .

Wuirtemberg, the wanne for hay, $8^{\prime} \times 8^{\prime} \times 8^{\prime}=512$
c. ft. .
$100 \cdot 58$
301.72

France and the Netherlands, the stère or wisse.
France, voie de Paris, $4^{\prime} \times 4^{\prime} \times 3 \frac{1^{\prime}}{}=56 \mathrm{c} . \mathrm{ft}$.
,,\quad corde de porte, $8^{\prime} \times 5^{\prime} \times 3 \frac{2^{\prime}}{\frac{1}{\prime}}=140 \mathrm{c} . \mathrm{ft}$.
Swiss Berne holzklafter, $6^{\prime} \times 5^{\prime} \times 33^{\frac{1}{2}}=105 \mathrm{c} . \mathrm{ft}$.
$\begin{array}{r}93 \cdot 60 \\ \text { Swiss Waadt moule, } 5 \times 5 \times 5=125 \mathrm{c} . \mathrm{ft} \text {. }\end{array}$ (19.30
${ }^{1}$ The true cubic fathom is also used for fuel.

FUEL-MEASURES-continued.

UNITS OF TONNAGE BY BULK (FOR LIGHT MERCHANDISE).

England, ton $=40 \mathrm{c} . \mathrm{ft}$.		40	39.97	I•13I6
France, old ton $=42 \mathrm{c}$. ft. de Paris	- .	- 50.88	50.84	I.4396
Iamburg, ton $=40 \mathrm{c} . \mathrm{ft}$.	- \quad	- $33 \cdot 25$	$33 \cdot 22$	0.9406
Portugal, ton $=57 \frac{3}{4} \mathrm{c} . \mathrm{ft}$.	- -	- $73 \cdot 36$	$3 \cdot 30$	2.0754

CUBIC FATHOMS AND CUBIC RODS.

GENERAL AND FORMER LOCAL UNITS.			
	Cub. yds.	Cub. ft.	Mèt. cub.
England, cubic fathom $=8$ cubic yards $=216$ cubic feet (not generally used)	8	$215 \cdot 8$	109
cubic rod of the decimal system at 33° $=1000$ cubic feet		1000	
Sweden, cubic famn $=2 \pm 6$ cubic		$199 \cdot 6$	
Danish, Norwegian, and Prussian cubic favn $=$ 216 cubic feet	$8 \cdot 742$	$235 \cdot 8$	$6 \cdot 6778$
Prussian cubic berglachter $=296 \frac{8}{27} \mathrm{c} . \mathrm{ft}$.	II.979	$323 \cdot 5$	9'1602
,, schachtruthe $=144$ cubic	$5 \cdot 828$	157.2	4.4519
. ${ }^{\prime}$, feldsteinruthe $=120 \mathrm{cubic}$ feet	$4 \cdot 857$	$131 \cdot 0$	3.7099
Leipzig, cubic klafter $=216 \mathrm{cubic}$ feet		$172 \cdot 3$	$4 \cdot 8778$
,, cubic lachter $=343$ cubic feet	10.140	$273 \cdot 6$	7.745^{8}
,, kubikruthe $=720$ cubic fet	2I•286	$574 \cdot 2$	16.2594
Frankfurt cubic klafter $=216$ cubic feet	$6 \cdot 519$	$175 \cdot 9$	4.9797
,, kubikruthe (earth) $=288 \mathrm{c} . \mathrm{ft}$.	$8 \cdot 692$	$234 \cdot 5$	6.6396
, , , (mason's) $=312$	9.417	254.0	7-1929
Baden, kubikruthe $=1000$ cubic feet .	35:347	953.5	27
Darmstadt, kubikruthe $=\mathbf{1 0 0 0}$ cubic feet	20.455	551.8	15.6250
Berne, kubikklafter $=512$ cubic feet.	16.904	456.0	12.9127
Geneva, cubic toise $=512$ cubic feet (Paris)	$22 \cdot 975$	$619 \cdot 8$	17.5499
Freiberg, cubic werkklafter $=1000$ cub. ft.	33.017	$890 \cdot 7$	$25 \cdot 2202$
Lausanne, cubic toise $=1000$ cubic feet	$35 \cdot 347$	$953 \cdot 5$	27
Neufchâtel, cubic toise $=1000$ cubic feet	33.017	890.7	$25 \cdot 2202$
Zurich, cubic klafter $=216$ cubic feet	7.636	206.0	5.8330
France, toise cube métrique $=216$ p. c. usuels	10.473	$282 \cdot 5$	
,, \quad, \quad ancienne $=216 \mathrm{p} . \mathrm{c}$. (Paris)	9.693	$261 \cdot 5$	7.4039
Russia, cubic sasheen $=343$ cubic feet .	12.704	$342 \cdot 7$	9.7038
Austria, cubic klafter $=216$ cubic feet	8.930	$240 \cdot 9$	$6 \cdot 8210$
Spain, braza or toesa cub. $=216$ cubic ft .	$6 \cdot 097$	167.3	4.6575
Portugal, braça or toesa cub. $=125 \mathrm{c} . \mathrm{ft}$.	$5 \cdot 881$	158.6	4.492 I

Oriental and East-Asiatic Cubic Measures.

It is very doubtful whether the cubes of linear units are generally employed as cubic measures.
N.B. These English and French values of cubic units are clipped or reduced from longer values that correspond exactly.

CHAPTER V.

MEASURES OF CAPACITY.

Commercial measures of capacity, as distinct from cubic measures before treated, have their origin under one or other of the three following forms of derivation :-

First. Some convenient vessel is adopted as suitable to measuring produce of various kinds, such as a cubical or cylindrical box for corn, or an earthenware or metal vessel for ale or wine ; and its dimensions are measured in the linear measure of the country. This rather haphazard mode is undoubtedly very primitive.

Second. A vessel is made to contain a certain amount of produce, wine, oil, water, rice, wheat, flour, or grain, so that when full its contents will counterbalance a certain number of specified weights in use. This method is slightly in advance of the former as regards care and accuracy.

Third. A vessel is made in accordance with the linear measures of the country, so as to form a definite and easily defined cubic measure, and is also arranged in accordance with the weights of the country, while the latter are adjusted to suit the cubic measures. This method is in advance of the other two, as it is a matter involving much care and skill to make a weight that shall exactly balance the contents of a filled
cubic measure. Such a plan therefore is usually only adopted at the reorganisation, reconstruction, or in the remodelling of a complete national system.

It may be noticed that measures of capacity are not by any means necessary to nations not largely employed in commerce, as almost everything may be bought or sold by weight; the exceptions being such things as cannot be conveniently weighed, and produce or merchandise that may be made to absorb a large amount of water without showing much subsequent trace of the operation.

Oil, corn, grain, and vegetable produce may be, and are in some places sold by weight, and so also may any liquid, beer, wine or spirits ; but it is principally for the convenience of the trade in liquids that measures of capacity are at all desirable, and secondly only with the object of preventing the adulteration with water of absorbent goods and produce, such as coke, flour, and things of low specific gravity or of a loose nature.

In many Oriental countries measures of capacity are almost unknown, and even in some semi-Oriental countries the so-called measures of capacity are merely disguised measures of weight, and are termed and expressed in accordance with the weight of grain, oil, wine or water, they may hold. From these very marked habits it may be supposed that the Oriental has been long fully aware of the fact that a capacity-measure of grain is comparatively valueless, and may hold nearly a quarter more by filling it with force.

In some countries, where Oriental influences have left an Arab, Moorish, or a Turkish trace, these undeveloped measures of capacity are common; and show the unobliterated effect of the units as applied to various substances.

Similarly the Indian. seer, or ser, of weight, passing into Ceylon, forms a measure of capacity, and its multiples the parrah and mercal follow the same process. The same thing occurs also in Maisur, and some parts of Southern India, the Carnatic, Madura, Madras, and Trichinopalli ; where there were some real ancient measures of capacity, the colaga, bullah, and others, with which the ser weight and the kandi weight system was blended at some comparatively late epoch.

Most of the doubtful measures of this transition class are more conveniently and correctly treated as measures of weight, even when varying in value with the nature of the produce or merchandise ; but it is the natural error of the Teuton to assume a measure of capacity to exist under circumstances where he himself would use one, though as a rule the contrary is more true in any land where transition-measures may exist. The correct test is to examine whether three or more such measures of various sorts of produce vary in moderately close accordance with the specific gravities; two cases may be accidental, and afford no basis of reasoning.

As regards true measures of capacity, although they afford the conveniences before mentioned, they yet have disadvantages of their own; the mode of placing or packing the goods or produce in a measure of capacity may affect the amount, to a very important extent, as much as 10 per cent., so also may shaking it ; again, there is no resource against a moderately incorrect measure of capacity, while a false weight or a faulty balance is easily exposed in a moment by means of a correct weight, or by reversing the weight and the counterpoise ; besides this, measures of capacity become unclean from use.

Whether measures of capacity are generally more convenient than those of weight, for any other commercial purpose than that of a rapid retail sale of liquids, and of compounding medicine, is hence a matter still open to some doubt, as very large quantities of liquids have necessarily to be gauged, very small quantities of liquids may be weighed, large quantities of dry merchandise have to be weighed in the majority of cases, and the same is the case with very small quantities generally.

The general tendency in England has been to revert to weight in preference to capacity, for a large number of things ; and to entirely abolish neutral measures. The sack, the keel, and the chaldron, of coal-measure, were for a long time neutral measures, that is, nominal measures of capacity, controlled by stipulations regarding weight ; the bushel of salt-measure was a nominal bushel controlled by weights legislated for various sorts of salt; the butter-measures were actual kilderkin and firkin casks under regulated weights for the contents; the soap-measures were very similar to the butter-measures in having regulated weight for kilderkin barrel and firkin filled casks. These things have now been long obsolete, and replaced by direct weight, but they serve to explain the transition-measures of other countries, though in the converse way, as in England the transition has been back to weight, while in semi-Oriental lands the transition was from weight to capacity.

ENGLISH UNITS

Measures of capacity have generally been treated in England as following two separate systems-one for liquids, the other for dry merchandise ; but though there
may be some convenience in dealing with them in this manner, and thus taking one set at a time, there is no more necessity for such a separation than for the German double arrangement in linear measure of a werkfuss, and a feldfuss.

In any complete system of measures of rapacity some will necessarily be more useful for dry produce, and some for liquids, while a certain number serve both purposes equally well ; also, the measures applicable to any single branch of trade may be very restricted and detached ; but this is not a sufficient reason for forming two distinct general categories. That we neither talk of a bushel of ale nor of a firkin of corn is simply due to custom and habit, for there is no special reason or necessity for the measure of capacity for ale being a firkin of 9 gallons, while that for corn is a bushel of 8 gallons ; in fact, the ale-firkin of Henry VIII. (Act 23 of 153I) was a bushel, for it was an 8 -gallon measure; and the ale-barrel was a coomb, being 32 gallons-an arrangement not by any means transient, but lasting for a century and a half, or until the time of Charles II. (Act I2 of 1660). The system of binary multiples and binary subdivision applies to liquids quite as conveniently as it does to dry produce, and there is no sufficient reason for adopting different methods for them ; we have hence receded in this respect from the advantages of the time of Henry VIII.

If at any time the 8 -gallon firkin, containing a bushel of water, and the 32 -gallon barrel, containing a coomb of water, be revived, there would not only be an accordance between wet and dry measures up to the barrel, but the barrel would then form a convenient unit for the upper or nominal measures above it, put these in
accordance both for wet and dry measures in the same way, and reduce the incongruities in the system.

At present the English wet and dry measures correspond only from the pint to the gallon; the fixed liquid measures extend from the minim to the butt of io8 gallons; and the fixed dry measures from the pint to the quarter of 64 gallons. Besides these there are variable nominal measures that differ with various sorts of produce ; tuns, lasts, sacks, and other units.

The division into legal and nominal measures of the whole series, which is given in the chapter on Systems, does not admit of very exact separation, without a lengthy study of various Parliamentary Acts ; but a more practical division may be otherwise effected. There are certain actual measures that are copies of national standard measures, made by scientific men in accordance with legal definition, and there are others, that are multiples of the foregoing, that do not admit of direct scientific verification, from their size being beyond the powers, means, and apparatus used for such purposes. Now, a standard capacity-measure cannot be sufficiently verified by simple linear measurement, but must, for exactitude, have its contents in water correctly weighed ; and all such standard measures, as do not admit of this process may be termed nominal measures in a correct sense of the word. On referring to the Report of the Warden of the Standards for i 866 it is mentioned that no balance existing in the Department could weigh more than 56 lbs . of water ; also in 1859 a standard cubic footweight (of about 62.42454 lbs . at 39° Fahrenheit) was made, and declared to be 62.32 Ilbs . at 62° Fahr. the English normal commercial temperature, instead of about 62.3548 lbs . ; hence the probability is that this was not a
standard from direct construction and verification, but one of estimation. From the above facts it may be deduced that the half-bushel is the largest real measure in England, and all higher measures are estimated measures, while perhaps even the gallon may be the highest unit of scientific verification. The parsimony of the nation with regard to scientific men and matters is too notorious to require comment ; gratuitous and voluntary contributions to scientific progress and improvement being alone received, with due regard for the delicate susceptibilities of the British tax-payer. Even the labours of restoring the lost national standards were works of scientific charity (for detail see page 82 of Chisholm, 'On the Science of Weighing and Measuring.' London, 1877).

The scientific determination of the larger English measures hence cannot be expected until scientific benevolence is again patronised ; and in the meantime we do not know with much exactitude the weight of water contained in a cubic foot at the English normal temperature.

The measures of capacity of which standards exist are given in the following list:-

Standard English Measures of Capacity, with their legal capacity and weight of zevater.			
THE BINARY SERIES.			
Bushel	Gallons. 8	Cubic inches. $2218 \cdot 192$	Grains. 560000
Half-bushel	4	1109*096	280000
Peck	2	554.548	140000
Gallon	1	277.274	70000
Pottle	$\frac{1}{2}$	138.637	35000
Quart	$\frac{1}{4}$	69.318	17500

Standard English Measures of Capacity-continued.

	Gallons.	Cubic inches.	Grains.
Pint	$\frac{1}{8}$	34.659	8750
Half-pint	$\frac{1}{16}$	17.329	4375
Gill	$\frac{1}{32}$	8.664	2187.5
Half-gill	$\frac{1}{64}$	4.332	1063.75
Quarter-gill	$\frac{1}{12}$	2.166	546.875
		46.211	II $666 \frac{2}{3}$
Bottle	$\frac{1}{6}$	23.105	$5833 \frac{1}{3}$
Half-bottle	$\frac{1}{12}$		

Other Measures.
Fluid-ounce measures of $4 \mathrm{oz} ., 2 \mathrm{oz}$. , I oz., $\frac{1}{2} \mathrm{oz}$.
Sixteen liquid-grain measures from 7,000 grains down to 1 grain.

Seven cubic-inch measures from to cubic inches down to o's cubic inch.

Three gas standards : io cubic feet, 5 , and I cubic foot. Also the following :

Legal Weight of Water in Contents. Grains.

ro cubic inches. $\quad 2524.58$

5	$"$
2	$"$
1	$"$
0.5	$"$
$0 \cdot 2$	$"$
$0 \cdot 1$	$"$

1262.29
504.916
252.46
126.23
$50 \cdot 492$
$25 \cdot 246$
Grains.
4 fluid-ounces.
$\begin{array}{ll}2 & " \\ 1 & " \\ \frac{1}{2} & "\end{array}$

I 750
875
437.5 218.75

Legal
Capacity.
...
...
...
...
...
...
Cubic inches.
6.932
3.466

I 733
0.866

	Grains.	Cubic inches.
10 liquid grains.	10	0.0396106
5	$"$	5
3	3	0.0198
2	$"$	2

Besides measures between 10 and 7000 liquid-grains. And the cubic foot measure, 62.32 I lbs . of water.

Such are the measures, their legal capacities, and weights of water they may contain, at the standard temperature of 62° Fahrenheit under a barometric pressure of thirty inches.

The basis of the tabulated series is the acceptance of the determination by Sir George Shuckburgh in 1798, that the cubic inch of water weighs 252.458 grains; a matter that will be further referred to in the chapter on measures of weight.

The highest legal measure in this series being the bushel, all higher measures may be treated as nominal, without entering into the Acts that regulate them.

It will be noticed that minim measures do not exist, and that a large set of liquid or fluid-grain measures do exist, in the series, which is taken from the Warden's Report for $1874-5$, and the list given in Chisholm's work dated 1877. This seems to foreshadow the abolition of the minim, its entire replacement by the fluidgrain measure, and a thorough accordance between all measures of weight and capacity from the ounce and fluid-ounce downwards-a consummation much to be desired, though under a more convenient subdivision.

A matter that appears neglected in connection with this arrangement is the dram and fluid-dram ; whether they are to be abolished in all their old forms, and no
measure between the fluid-ounce and the fluid-grain, nor between the ounce-weight and the grain-weight, is to exist, or whether some new arrangement is in prospect, seems still undecided. In the meantime the old fluiddram, an eighth of the fluid-ounce, would be represented by $54 \cdot 685$ fluid-grains, the equivalent of 60 old minims.

The old subdivision of the fluid-ounce into 480 minims, making the fluid-dram exactly 60 minims, preserved the binary method.

THE NOMINAL MEASURES.

Among the upper and nominal liquid-measures, the barrel of 36 gallons is the principal unit. The halfbarrel and the quarter-barrel are termed kilderkin for beer, or runlet for spirits, and firkin ; and the rest are multiples, as far as real English measures extend ; the hogshead being $\mathrm{I} \frac{1}{2}$ barrel, and the butt 3 barrels ; the butt being the highest fixed nominal measure completing the English series, which is arranged to suit the measurement of ale and beer.

The nominal spirit-measures.-The Jamaica puncheon of rum or spirits is often treated as a fixed English measure of 84 gallons, though it holds no place in the national series, varies greatly in amount, from about 72 to nearly 108 gallons, and is a measure of foreign origin, possibly a double French poinçon. The tierce of brandy or spirits is also a measure of foreign origin, a Bordeaux tierçon, which was two-thirds of the barrique and held about I 5 I litres, or 34 gallons, although its former trade value in London was 42 old wine-gallons, or about 35 imperial gallons. The awm of spirits was either a German or a Dutch ahm, ohm, or aam; the Prussian
ahm is $30 \frac{1}{4}$ gallons, the Dutch aam $33 \frac{1}{2}$; the trade value of the awm in England is 30 gallons. The anker of spirits was apparently a Continental anker at one tirne, but as the latter seldom exceed $8 \frac{1}{2}$ gallons, and the English trade anker is a reputed io gallon measure, the origin is doubtful.

The whole of these spirit-measures of foreign introduction appear perfectly unnecessary in the English system, and might be well abolished in favour of the barrel, the half-barrel or runlet, and the quarter-barrel as an anker, which could be recognised by legal enactment, and thus complete the system.

The nominal wine-measures.-The pipes, butts, and hogsheads of wine are not English measures, but imported measures received from other nations, varying greatly in value ; their correct values will be found in the tables of equivalents of foreign measures at the end of the chapter, also in many cases their English reputed trade values.

FOREIGN MEASURES OF CAPACITY.

On reviewing the whole of the capacity-measures used in modern times in Europe, their variety in value is certainly very marked, and their origin is generally very obscure ; whilst at the same time they present a general uniformity of object or intention.

Commencing with the smallest measures and going upwards, the absence of medical measures corresponding to minims and fluid-grains is notable, indicating that compounding is done entirely by weight ; the sole exception to this appears to be the cubic centimètre of the metric system, which is the thousandth part of the
litre, and whose content of water weighs a gramme. In English equivalents the cubic centimètre is either 16.93 I or 15.432 liquid grains, and its content in water weighs 1.5432 grains. The multiples of the cubic centimètre up to the litre are simple numerical multiples, and can hardly be termed measures ; thus there is no convenient measure in the system corresponding to the English fluid ounce, the corresponding value of which would be 28.4 cubic centimètres. The litre is 17614 pint, or 0.22018 gallon, and is therefore larger than the new English bottle-measure, $\frac{1}{6}$ of the gallon, ${ }^{\cdot} 16667$ gallon or I $\frac{1}{3}$ pint.

Proceeding to the small commercial liquid-measures devised to meet convenience in the retail sale of liquids, ale, beer, wine, oil, and honey, there is a marked accordance among the whole of the quarts, pots, mass, and crushka of Northern Europe, and the boccale and bozze of Southern Europe ; the quartas and quartillos of Spain deviate most from the general type, being submultiples of the azumbre, and of the arroba, or old Moorish or Arab units. The extended employment of the term quart with local modification over so large a part of Europe, including Poland, for a measure of about the same value, is also worthy of note; whether this has been a mere repetition of the old Roman term quartarius is doubtful, because the quartarius was a much smaller measure (less than half an English pint), being a quarter of the sextarius or Roman unit (αs) of capacity. This contained $\frac{10}{6}$ of a Roman pound of water $=\frac{10}{6} \times \frac{5}{7}$, or about I. 2 English pounds, thus making the quartarius about a quarter of an English pint ; while the quarts of Modern Europe are almost all near the English quart. Such quarts may, therefore, have been Gothic and Teutonic in
origin, or, if that were not the case, they present a very striking instance of the generalisation of a unit of measure based on natural requirement and conveniencethe correct principle of formation.

The multiples of the quart, pot, mass, stof, and crushka of Northern Europe are binary; the general type being, 2 quarts or pots $=1$ kanne or can; and 2 kannen $=1$ stübchen or gallon-in strict analogy with the English measures ; for the term pot is exclusively used in some parts of England, and the term can is also applied to two pots in the same way. In Southern Europe, or rather in Italy, the pinta was a measure of 2 boccali ; but no measure of 4 boccali, or any liquid measure corresponding to the Teutonic stübchen and English gallon, exists otherwise than as a very exceptional case. There are seldom any Italian measures between the pinta and the barile or the brenta, an approximate runlet, kilderkin, or half-barrel in English terms; the exceptions occurring only when the local Italian barile either takes the place of the brenta or happens to be rather smaller.

Proceeding from the gallon to the nominal liquidmeasures of capacity, the German and Scandinavian ahm or ohm of about 30 gallons seems the most marked unit of this class, and though local measures vary, its ordinary typical subdivision is into 2 eimers, 4 ankers, 20 viertel, or 40 stübchen. The ahm, therefore, corresponds to the English kilderkin, runlet, or half-barrel. In the present Italian measures the soma is a hectolitre, but in the former local Italian measures, the soma, the brenta, and the mastello of from 15 to 20 gallons, and the wine-barrel, barile, of about two-thirds that amount, were the measures corresponding to the runlet.

In Northern Europe the higher nominal liquid-mea-
sures of capacity are mostly multiples of the awm, and sometimes of the barrel (termed a tonne) ; the barrel being variable, between 20 and 40 gallons, its local values are given in the tables. The Swiss saum corresponds to the English barrel, it is sometimes 3 local awms, or 4 local eimer, but is almost invariably a measure equal to 100 mass; the exceptions being the saum of Basel and Wintherthur of I20 mass, of Schaffhausen and Saint Gall 128 mass, of Zürich 90 mass. The double system of stadtsaum and landsaum correspond to the stadtmass and landmass.

The oxhoft or hogshead is $1 \frac{1}{2}$ awm, the butt is 2 awm , and the fuder or tun is 6 awm . The fass or vat corresponds to the Jamaica puncheon, and is variable, sometimes being a multiple of the barrel (tonne) and sometimes having some simple ratio to the oxhoft or to the eimer ; its values are therefore given in the tables. It must, however, be noticed that the term fass is frequently and unnecessarily applied to the German fuder, kufe, and stückfass, thus causing confusion.

In Southern Europe the butt and the pipe are sometimes different measures and sometimes identical, but they form the more important units, while the barrica, which slightly corresponds to the oxhoft or hogshead, is a mere term for either half a pipe or for half a butt, and the tonelada (or tun) is a term either for two pipes or for two butts. The values of the pipes and the butts of Southern Europe are given in the tables, and in some cases the accepted English trade-values corresponding to them. The general arrangement adopted in the tables of liquid-measures of capacity is this: a series of small measures approximating to the quart is first given ; this is followed by a series of general values of measures
corresponding to the gallon, and another set corresponding to the runlet or kilderkin. The last set is a series of nominal measures from the barrel to the tun.

The Asiatic and African liquid measures of capacity given are very few in number, but it must be remembered that Eastern nations deal by weight generally, rarely use measures of capacity, and seldom have any; for the Oriental Moslem neither takes strong drink, nor consumes the midnight oil.

DRY-MEASURES OF CAPACITY.

Measures of this class are the most unsatisfactory of measures generally, from the fact that their use is or should be mostly confined to produce and goods of a loose nature, grain, coke, lime, fruit, vegetables, \&c., and to those of an absorbent nature that may be easily tampered with and adulterated with water without leaving much trace of the operation. Such produce may often be so handled in measurement as to render the indicated amount entirely fallacious; the error possible being fully 25 per cent. ; though in most cases it even amounts to io per cent. On the other hand, it is almost as unsatisfactory to weigh many such goods; for instance, coke, which will absorb more than one-third its original weight of water, without its being apparent, would be liable to an undiscoverable error of 33 per cent. Other things are not liable to such a high error from trusting to weight, and as a rule estimation by weight is preferable to measurement by capacity.

Under such circumstances any tabulated values of equivalents of foreign dry-measures of capacity are not
more useful from being extended to many figures, for they cannot be practically applicable with exactitude.

The range of dry-measures of capacity is necessarily very limited, from the reason that small quantities of dry produce are sold by weight, while very large quantities are either sold by weight or by nominal measures of capacity, loads and lasts that are mere arithmetic multiples of real measures.

In every well-regulated system of measures, the drymeasures are in conformity with the liquid-measures, and are convenient multiples and submultiples of them; but this cannot be said to be the case generally either in the old German measures or in the old Italian measures, where in some instances the accordance is very imperfect and badly arranged. In the old French measures the arrangement was worse. Such circumstances are the cause of and form the necessity for a reconstruction of the whole series, or a reason for the adoption of the metric system. In England, where a bushel is 8 gallons, and a quarter is 8 bushels, and the system is in this respect perfect and complete, any such change would not only be undesirable and unnecessary, but needlessly troublesome.

In Russia-where the vedro of liquid is 30 lbs . of water, the chtof, its eighth part, is $3 \frac{3}{4}$ pounds, the tschetverik of dry-measure is 64 pounds ${ }^{1}$ of water, and the tschetvert is 8 tschetverik-there is a relation which holds throughout the whole, which similarly renders the adoption of metric measures unnecessary and unadvisable. On the other hand, it does seem unfortunate that the binary system is not rigidly adhered to in the Russian

[^6]system, which might be done either by making the tschetverik exactly equal to two vedro, or by making the vedro exactly half a tschetverik.

As to the range of dry-measures, it may be noticed the English gallon is comparatively large as a liquidmeasure, while as a dry-measure it is a comparatively small one. In point of importance, the bushel of drymeasure is the principal unit of use, and the submultiples, the pecks, gallons, pottles, quarts, and pints are of less consequence, while the quarter of eight bushels is an important measure. Hence the extent of the more important English dry-measures is from the bushel to the quarter, higher measures being nominal measures, and smaller measures being treated as fractions of the bushel.

The tables of equivalents of foreign measures at the end of this chapter are arranged in accordance with this classification, and are divided into three classes : measures analogous to the bushel, those corresponding to the quarter, and nominal measures of higher value.

It might at the first glance appear preferable to arrange them in accordance with their names, and follow out types of measure based on nomenclature. Such an arrangement is possible in the tabulation of the liquidmeasures, and is actually carried out, for the reason that the liquid-measures of Europe were found to follow certain types in a general and approximate way; but among the dry-measures, where less parallelism exists, any such attempt would have caused confusion, and hence the English bushel and the English quarter were taken as types with which the tabulated measures were grouped, either as small or as large measures. The principal cases that led to this arrangement were, first, the metzen, some of which are small, being mere
subdivisions of the scheffel, and others very large, being even larger than many of the scheffel ; and secondly, the scheffeln, some of which are comparatively small, and others being larger than an average malter. Also in Switzerland the values of the mass, the viertel, and the sester or setier, are similarly subversive of strict conformity of type to general value.

Follewing out the classification adopted, it may be noticed that the measures analogous to the English bushel, or small measures, are among the nations of Northern Europe termed scheffel, skieppe, schepel ; the exceptionally large scheffel of Brunswick and that of Bavaria falling outside this class, and being approximate quarters. In Southern Germany and in certain provinces of Central Germany the scheffel is wanting, and its place, or rather its employment as an approximate bushel, is supplied by the simmer, sester, himt, and by a metze of large size ; in Switzerland the viertel holds a generally corresponding position, although there is much diversity among Swiss measures. The Italian staja and stari were mostly rather small bushels; while the Spanish and Portuguese fanegas and fangas are very large bushels, mostly about a bushel and a half. The kiloz and bacile of Turkey and Greece, again, are rather small bushels ; while in Asiatic and African countries true dry-measures are rare, as grain is most frequently sold by weight.

LARGE AND NOMINAL DRY-MEASURES.

The English nominal dry measures are multiples of the bushel in the same way as the nominal liquid measures are multiples of the barrel.

The quarter is a fixed measure of eight bushels, the half-quarter being called a coomb, and the half-coomb or two-bushel measure a strike-convenient terms less used now than in former times. The sack is unfortunately variable, its reputed values being for coke 3 bushels, for corn 4 bushels, and for flour 5 bushels; while the sack of coal is not a measure of capacity but a weight of two hundredweight ; and the sack of wool is also a weight, being 364 lbs . The exclusive sale of corn and flour by weight would reduce the sack to a fixed single measure. The chaldron, used for coke alone, is 9 bushels-an unnecessary measure that might well be suppressed and superseded by the quarter of 8 bushels; while, if convenient, retaining the name of chaldron as applied to coke ; similarly, also, the sack might either be entirely ignored as a measure of capacity, or fixed at 4 bushels for goods of all sorts.

Proceeding to the foreign measures, that approximate to the English quarter as regards value-that is, a measure of about 8 bushels, or 3 hectolitres of the metric systemit may be noticed that the English quarter is seldom closely represented anywhere ; the Russian tschetvert being that most nearly corresponding. Anything more than roughly approximating to a general uniformity can hardly be expected in measures of this type; but the greater part of them appear to range between the half and the double of the English quarter, and it would not be conducive to clearness to subdivide them into separate sets.

The malters of Germany range between 3 and 8 bushels, excepting the unusually large Prussian malter ; the large scheffel of Bavaria and that of Brunswick fall among these large measures. The droemt is a large
measure, analogous to the Prussian malter, and a few of the simmer and simra fall in this category, all the measures of which are rather larger than the English quarter.

The Austrian müth is an exceptional measure of large size. The Swiss mütt are smaller measures following a type of their own generally, but are very diverse in value ; hence the Swiss malters and Swiss sacks, that approximate more nearly to the English quarter, are given in preference to them in the tables; from these, the values of the mütt may be reduced when required.

The old Italian moggio, rubbio, sacco, and soma, are very diverse ; so also are the Spanish cahiz and the Portuguese moio. The Levantine large measures show a similar diversity.

There is one dry-measure of capacity that is common to almost every nation that uses capacity-measures, and that is the sack ; the word sack is reputed to be one of the most widely spread terms in the vocabulary of the world, and accounted for by the theory of anxiety to secure luggage and effects on the disruption of races at the historic city of Babel. However this may be, the values of the grain-sack of various nations are exceedingly varied, the extreme limits being an English bushel and an English quarter-that is, the value is between one bushel and eight bushels ; most of them, however, lie between two and four bushels, thus affording suff. cient grounds for theorising about a primitive or primæval sack. As a modern measure the sack is seldom worthy of consideration; the cases in Italy and in Switzerland where its place is not supplied conveniently by some other measures are comparatively few.

The nominal measures of capacity are the load, the barrel, the cartload, and the last.

The load, or man's load, is usually a measure of about five English bushels, but does not admit of any fixity; the cartload is generally about 40 bushels, or five English quarters, and is similarly variable.

The barrel, or, as many nations term it, the tonne, of capacity, varies with the description of produce, and is also very variable as regards capacity; the only source of uniformity being the common custom of using old barrels intended for liquids, which have some approximate known capacity branded on the bung-stave.

The grain-last is frequently a multiple of the barrel, and, as it is often referred to in commercial transactions and shipping matters, it becomes a more important unit than the barrel ; the values of the grain-lasts are given in the tables, and from these the contents of some grainbarrels may be reduced when required.

A great number of lasts of various sorts are mere numerical expressions, or customary terms for produce packed according to stereotyped habit and the requirements of trade, in barrels, bales, or collections of various forms; such lasts can seldom be considered measures of capacity, as the barrels are estimated by weight.

The English last of capacity varies from 10 to 12 quarters; the numerical last expressing a quantity is sometimes a multiple of any customary barrel ; thus the last of herring or of cod consists of 12 barrels, the last of gunpowder 24 barrels, a last of soap 12 barrels, and of salt 18 barrels; the barrels being very various.

The following small collection of values of the foreign barrels as dry-measure is suited to the Baltic and Northern ports of Europe :-

Norway and Denmark.

	English gallons.	French litres.

$$
\text { Barrel }=\frac{1}{22} \text { last }=144 \text { krüge . . } 30.60 \quad 13897
$$

For flour, soap, butter, tallow and meat.
Barrel $=136$ krüge or pots . . 28.92 I3I. 38
For fish, pitch and tar.
Barrel $=120$ krüge $255^{\circ} 50 \quad 115.81$
For coal.
Barrel $=\frac{1}{18}$ last $={ }^{17} 76$ krüge . . $37770 \quad 169.85$
For salt.
Barrel=180 krüge or pots . . $38.55 \quad 1737 \mathrm{I}$
Sweden and Finland.
For corn.
Augmented barrel $=63$ kannar . $36.29 \quad 164.8 \mathrm{I}$
For flour and fish.
Augmented barrel $=48$ kannar $\quad 27.65 \quad 125.57$
For salt and lime.
Augmented barrel $=34$ kappar . $34.27 \quad{ }^{2} 55.65$
For pitch and tar.
Augmented barrel=95 stop . . 27.36 124.26
For malt.
Augmented barrel $=38$ kappar . $38.3 \mathrm{I} \quad$ I 73.97
The exceptional customary barrels in Finland are :-
For coal.
Barrel of 56 kannar . . . 32.26 . 146.50
or the unaugmented Swedish corn-barrel.
For salt.
The Finnish barrel is the Swedish augmented corn-barrel
The augmentation is a customary addition of one-eighth.
Russia and Finland.
For Finland, see as under Sweden.
The Riga barrel for dry merchandise is : -
For corn and flax, pitch and tar, fish and salt.
Barrel $=\frac{1}{24}$ th last $=2$ lof $=12$ kulmet $\quad 30.07 \quad 136.57$

The Revel barrels for dry merchan- English French
dise :-
For corn, flax, hemp, and lime.
Barrel $=\frac{1}{24}$ th last $=3$ lof $=9$ kulmet . $26.05 \quad$ II8.30
For salt.
Barrel $=\frac{1}{18}$ th last $=4$ lof $=12$ kulmet $\quad 34.73 \quad$ 57.74
Holland.
The Nederlandsche vat or barrel of soo kannen (metric) gallons. litres.

North Germany.
Berlin barrels.
For coal, salt, cement, lime, potash.
Barrel $=4$ scheffel or $7 \frac{1}{9}$ cubic feet . $48.4 \mathrm{~s} \quad 219.85$
For flax and hemp.
Barrel $=37 \frac{2}{3}$ metzen or 723^{2} cubic
inches 28.49
129.39

Hamburg barrels.
For corn and flax.
The Danish corn-barrel . . . 30.60 I38.97
For lime.
Barrel $=3$ fass $=6$ himten . . $34.84 \quad 158.25$
For coal.
Barrel $=\frac{1}{12}$ last $=8 \frac{1}{5}$ cubic feet $\quad .42 .46 \quad$ 92.82
For salt.
Barrel $=\frac{1}{12}$ last $=7$ himten . . 40.65 I84.62
Bremen.
For coal.
Barrel $=\frac{1}{12}$ last 42.45 192.82
For salt.
Barrel $=\frac{1}{12}$ last $=3 \frac{1}{3}$ scheffel . . $54.36 \quad 246.90$
Lübeck.
Corn-barrel $=\frac{1}{24}$ last $=4$ scheffel . 29.33 133.62

Much of the difficulty in connection with barrels is obviated in practice by the brand on the bung-stave, which gives, either in English or in French units, the reputed capacity or weight of contents of the barrel. Values of the last, a multiple of the barrel, are easily computed for cases other than those of grain ; the grainlasts alone are given in the tables following :-

As regards the future of the English capacitymeasures, based on an old French pound of another system, it perhaps cannot be expected that they will exist unaltered much longer. As to substitutes for them, the English cubic foot and its multiples, whether decimal, binary, or both, are always available.

The strong attachment that a nation of copious drinkers has for its quarterns, pints, and quarts, militates against any change in retail or small liquidmeasures, below the cubic foot; the wholesale liquid traders might object to change in casks and barrels ; but in dry-measures above the cubic foot there seems a good opportunity for immediate change with a small amount of alteration, by adopting three units, the cubic foot, the quarter $=10$ cubic feet, instead of 10.27 cubic feet; and the last $=100$ cubic feet, instead of 102.7 cubic feet. These three units would answer all purposes in the upper part of the scale ; while liquid-measures could serve for retail dealing. If required, a chaldron of 4 quarters might be also adopted. Anything more is evidently superfluous.

The same principle might also be similarly applied in liquid measures, with equal convenience and simplicity.

SMALL LIQUID MEASURES.

GENERAL VALUES.

England, imperial quart $=2$ pints $=4$ gills $=40$
fluid ounces; $2 \frac{1}{2}$ pounds of water at 62° Fahr.
Prussia, quart $=2$ oesseln ; 64 cubic inches. .
Norway and Denmark, pott $=4$ pœgel ; 54 cubic inches .
Sweden, stop $=4$ qwarter $=16$ ort ; 50 cubic tum
Russia, crushka $=10$ charki; 3 pounds of water
Austria, mass $=2$ kannen $=4$ seideln . . . $1 \cdot 246$
France, litre of the metric system ; i kilogram of water
Holland, Nederlandsche kan = 10 maatje

Quarts	Fluid oz.	Litres
1	$40 \cdot 10$	1.135
I 0008	$40 \cdot 44$	I 145
0.851	$34 \cdot 12$	0.966
1.152	46.20	1-308
$1 \cdot 082$	$43 \cdot 40$	I 2229
I 246	$49 \cdot 96$	1.415
O.881	$35 \cdot 32$	1×000
1•189	$47 \cdot 68$	1.350
1 777	71.24	2.017
I-214	$48 \cdot 68$	$1 \cdot 380$

Poland, kwarti (metric) after 1819 . . .
Waadt and other Cantons, mass or pot $=10$ glas (metric) ; 50 cubic inches; (since 1823) . . I•I89
Spain, Castilian azumbre $=4$ quartillos; $154 \frac{2}{3}$
cubic inches $=16$ copas $\mathbf{I}^{\prime} 777$
Portugal, Lisbon canhada $=4$ quartillos . . $1 \cdot 214$
1.380

Oriental Countries :-

Liquids are generally sold by weight ; for exceptions, see under local values.

FORMER LOCAL OR SPECIAL MEASURES.

German Mass, Kanne, Quart :-

	1.008	$40 \cdot 44$	I•I45
Anspach, mass $=2$ seideln $=4$ sch	1-194	47:89	I.356
Altona, Hamburg, Liibeck, and Rostock . pot, or kanne $=2$ quart $=4$ oesseln	1.59	63:92	
Baden, mass = io gläser	32 I	$2 \cdot 98$	
Bavaria, masskanne $=4$ quarteln; 43 cubic inches.	0.942	75	
Bremen, quart $=2$ oesse	. 711	28.41	$0 \cdot 805$
	$0 \cdot 809$	$32 \cdot 4$	

SMALL LIQUID MEASURES-continued.

SMALL LIQUID MEASURES-continued.

SMALL LIQUID MEASURES-continued. Abyssinia :-			
Cuba, for honey $=62$ English cubic inches .	- 894	35.85	1.015
Oriental Countries, including Northern India:-			
Liquids are sold by weight.			
Southern India :-			
Madras, measure $=8$ olluck $=100$ cubic inches, English	1*442	57.82	1. 637
Cochin, oil measure.	0.625	$25 \cdot 05$	$0 \cdot 710$
Madura, ,	I 578	63.28	I 792
Masulipatam, manika	2.083	83.54	$2 \cdot 365$
Negapatam, oil measure	1	$40 \cdot 08$	I'135
Trichinopalli ,	$0 \cdot 516$	$20 \cdot 68$	0.585
Ceylon :--			
Colombo, measure or ser of capacity $=65$ cubic inches, English	0.938	37.58	I 0664
Thaï (or Siam) :-			
Thanan $=100$ cubic niu	0.834	$33 \cdot 46$	0.947
Sumatra :-			
Pakha	0.484	19.42	0.550
China :-			
Liquids are sold by weight ; tching measure also exists, corresponding to the tching weight	0.615	$24 \cdot 72$	0.700
Japan :-			
Shöo = 10 göo . . .	1:598	64.07	I-8I4

INTERMEDIATE LIQUID MEASURES.

GENERAL VALUES.			
England: the imperial gallon of 10 pounds of water at 62° Fahr. $=4$ quarts $=6$ bottles $=160$ fluid ounces		$0 \cdot 1604$	$4 \cdot 5417$
Germany: Prussian stübchen $=4$ quarts or mass; 256 cubic inches	$1 \cdot 0084$	$0 \cdot 1617$	4.5800
Norway and Denmark : stiibchen $=3 \frac{7}{8}$ pots	$0 \cdot 8243$	$0 \cdot 1322$	3.7437
Sweden : double kanna $=2$ kanna $=4$ stop; $\frac{1}{5}$ of a cubic foot of water, or 200 cubic tomme	I'152I	0.1847	$5 \cdot 2326$
Russia: vedro $=10$ crushka; 30 pounds of water .	2•7057	0.4340	12.2884
Austria : viertel = 10 ordinary mass .	3•II49	$0 \cdot 4996$	$14 \cdot 1473$
Italy : the soma $=10$ pinte (metric) .	$2 \cdot 2018$	0.3532	10
Waadt : the broc of 500 cubic inches $=10$ pots or mass $=100$ glas	2•9724	0.4768	13.5
Spain: the wine arroba $=4$ quartillas $=8$ azumbres (Castile)	3.5531	0.5699	$16 \cdot 1370$
Spain: the oil arroba $=4$ quartillas $=100$ panillas (Castile)	$2 \cdot 7663$	$0 \cdot 4437$	12.5640
Portugal : the almude of Lisbon $=2$ alqueiras $=12$ canhadas	3.6418	0.5841	$16 \cdot 5400$
Turkey : alma or meter ; 8 oka of oil . .	1.1531	0.1849	$5 \cdot 2368$
Oriental liquid measures are few and local (see Local Units).			

FORMER, LOCAL, OR SPECIAL VALUES.

Germany :-

INTERMEDIATE LIQUID MEASUREScontinued. Germany :-			Litres
Altona, ${ }^{1}$ Rostock, Liibeck, and Bremen, viertel $=9$ quarts .	I 5941	$0 \cdot 2557$	7.240
Coblenz, viertel $=4$ mass.	12409	0.1990	5.636
Cöln \quad, = 4	1•1711	0.1878	$5 \cdot 319$
Frankfurt ${ }^{1}$ ", $=4$ altemass	I•5789	$0 \cdot 2533$	7.171
Hamburg ${ }^{1}$,, $=8$ quarts	I 5941	0.2557	7.240
Hanover ," =8 ,,	1.7122	0.2746	7.776
Hesse-Darmstadt, ${ }^{1}$ viortel $=4$ mass	1.7614	0.2825	8.000
Kiurhesse, ${ }^{1}$ viertel $=4$ mass	1.7471	0.2802	7.935
Lippe-Detmold, ${ }^{1}$ viertel $=5 \frac{2}{5}$ kannen	I.6362	$0 \cdot 2625$	7.431
Mainz, ${ }^{1}$ wine and spirit viertel $=4$ mass	I. 4924	0.2394	6.778
, beer and oil, = 4 ,	I•6608	0.2664	$7 \cdot 543$
Baden, stutz $=10$ mass	$3 \cdot 3027$	0.5297	
Würtemberg, imi $=$ Io helleichmass .	4.0447	0.6488	18.371
France:-			
Velte $=4$ quarts $=8$ pints (Paris)	1.6405	0.2631	7×45
,, (mesures usuelles) $=10$ litres (1812-1840)	$2 \cdot 2018$	$0 \cdot 3532$	
Corsica, zucca $=9$ boccali \quad -	2.5695	$0 \cdot 4122$	11.67
AUSTRIA :			
Viertel = io mass (imperial)	3.1149	0.4996	14.147
Cracow (old), garniec = 4 kwarti	$0 \cdot 8351$	$0 \cdot 1339$	$3 \cdot 793$
Illyria, Trieste, caffiso -	26290	$0 \cdot 4217$	II 94
Russia :-			
Vedro $=10$ crushki $=30$ pounds of water	2.7057	0.4340	12.288
Warsaw, old garniec $=4$ kwarti	0.8351	0.1339	$3 \cdot 793$
,, metric garniec $=4$ kwarti	0.8807	$0 \cdot 2595$	4.000
Holland and Belgium:-			
Amsterdam, viertel $=3 \frac{1}{21}$ stoopen	1.6271	0.2610	7.390
Brussels, schreef $=2$ geltes $=4$ pots .	I•193	$0 \cdot 1913$	$5 \cdot 418$
Spain and Portugal :-			
Castilian wine arroba $=8$ azumbres	$3 \cdot 554$	0.5699	16.14
,, oil ,, of $27 \frac{1}{4} \mathrm{lbs}$. of water.	$2 \cdot 766$	0.4437	12.56
Aragon, cantaro, or wine arroba $=8$ azumbres	2.281	0.3655	$10 \cdot 36$ 13.55
${ }^{\prime \prime}$, oil arroba of 36 pounds ${ }^{\text {a }}$, ${ }^{\text {a }}$ mitallas	2.983	0.4786	13.55 10.31
Barcelona, cortan, or wine arroba $=6$ mitadellas	2.270	0.3641	10.31
Malaga, cantara (wine) $=8$ azumbres	3.490	0.5598	1.5 .85
Valencia, cantaro (wine) $=4$ azumbres oil arroba of 30 pounds	$2 \cdot 528$	$0 \cdot 4055$	II 48

[^7]| INTERMEDIATE LIQUID MEASUREScontinued.
 Spain and Portugal-continued :- | | | Litres |
| :---: | :---: | :---: | :---: |
| Canary I., arroba of $4 \frac{1}{4}$ old English wine gallons | 3.541 | 0.5680 | 16.082 |
| (iibraltar, arroba of $3 \frac{1}{\frac{1}{5}}$ old English wine gallons | $2 \cdot 666$ | 0.4276 | 12.108 |
| Majorca, oil cortan of 9 rottoli | 0.890 | $0 \cdot 1428$ | '043 |
| Minorca, gerra $=2$ cortes . | $2 \cdot 655$ | $0 \cdot 4259$ | 12.06 |
| La Havana, arroba of 4 $4 \frac{1}{10}$ old English wine gals. | 3.416 | 0.5479 | 15.514 |
| Valparaiso, arroba of 84, English imperial gallons | 8.250 | 1-3233 | 37.469 |
| Mexico, jame $=18$ quartillos | $1 \cdot 761$ | 0.2825 | 8.00 |
| Liston, almude $=2$ alqueiras $=12$ canhadas | 3.642 | 0.5841 | $16 \cdot 54$ |
| Oporto ,, =2 , = 12 | 5.522 | 0.8957 | 25.08 |
| Madeira almude | 3.902 | $0 \cdot 6258$ | 17.72 |
| Brazil $\quad, \quad=2$ cantaros $=12$ canhadas | $3 \cdot 642$ | 0.5841 | 16.54 |
| Italy | | | |
| Florence, fiasco $=2$ boccali | | $0 \cdot 0805$ | |
| ,, fiasco (oil) $=2$, | 9 | 0.0738 | 2.089 |
| Ferrara, secchio $=5$,, | 24 | 0.2444 | $6 \cdot 92$ |
| Venice , = $\mathbf{I O}_{\frac{2}{5}}$ | $\cdot 378$ | 0.3814 | $10 \cdot 80$ |
| Vicenza ," = 10 bozze o inghistare | 2.089 | $0 \cdot 3352$ | 4 |
| Milan, bassa $=6$ boccali | I.039 | $0 \cdot 1667$ | 72 |
| Verona , , $=4 \frac{1}{2}$ inghistare | - 971 | 0.1558 | 4.41 |
| Rome, cugnatella $=4 \frac{1}{2}$ boccali (oil) | 1-808 | 0.2899 | $8 \cdot 21$ |
| Messina, caffiso of $12 \frac{1}{2}$ rottoli grossi (oil) | $2 \cdot 576$ | $0 \cdot 4132$ | 11.70 |
| Calabria, stajo $=30$ pignatoli | $6 \cdot 709$ | 1.0761 | $30 \cdot 47$ |
| Milan ,, $=32$ boccali | 5.544 | 0.8893 | $25 \cdot 18$ |
| Naples, staro $=20$ pignate $=16$ quarti | 2.228 | 0.3574 | 10'12 |
| Sardinia, misura of oil | $2 \cdot 114$ | 0.3390 | 9.60 |
| Malta, caffiso (oil), $5 \frac{1}{2}$ English wine gallons | 4.582 | 0.7349 | 20.810 |
| Ionian I., jaro of wine or oil $=4$ mittre | 3.750 | $0 \cdot 6$ | 17.032 |
| ,, secchio = 12 boccali | $2 \cdot 500$ | 0.4010 | II 354 |
| Zante and Cephalonia, lira o pagliazza | 1.666 | 0.2674 | 7.570 |
| Arabia, Algiers, Morocco ${ }^{1}$:- | | | |
| Mokha, gadda $=8$ nasfiah . | I 666 | | $7 \cdot 567$ |
| Algiers, khulleh or khull | $3 \cdot 523$ | 0.5297 | $16 \cdot 00$ |
| ,', metal of oil of 20 rotal kébir | 3.941 | $0 \cdot 6322$ | $17 \cdot 90$ |
| Tripoli \quad, 42 rottal | 5'I39 | 0.8243 | $23 \cdot 34$ |
| ," harbaia $=6$ caraffa, $18 \frac{3}{4}$ rottal. | $2 \cdot 294$ | $0 \cdot 3680$ | $10 \cdot 42$ |
| ,, ,, of pommade $20 \frac{1}{4}$,, unknown spec | | | |
| | 2.068 | | 9.845 19.690 |
| Soussa, oil matal | 4.335 5.284 | 0 | 19.690 24 |

${ }^{1}$ In Oriental countries, including Northern India, liquids are generally sold by weight ; and large liquid measures do not exist.

CH. V.

INTERMEDIATE LIQUID M continued. SOUTHERN INDIA :-

Ceylon:--
Colombo, markal, 78 oc . in. $=12$ measures, or
seers of capacity 2.813
Thai (or Siam) :-
Thangsat $=20$ thanan $4^{\bullet} 1722$
Sumatra:-
Sukat $=12$ pakha I*453
China :-

Liquids are sold by weight.
Also, teu = 10 tching measures . . . I•54I
Japan:-
Liquids are sold by weight. Also, To = 10 shöo $=100$ göo 3.9938

LARGE LIQUID MEASURES.

GENERAL VALUES.

England: runlet or kilderkin $=18$ imperial gallons; or 180 pounds of water at $62^{\circ} \mathrm{Fahr}$. $=2$ firkins $=72$ quarts $=2880$ fluid ounces
Prussian eimer $=2$ anker $=60$ quarts ; or 3840 cubic inches
Sweden : eimer $=2$ ankar $=30$ kannen $=60$ stop; or 3 cubic feet
Norway and Denmark : anker $=5$ viertel $=10$ stïbchen $=19 \frac{1}{2}$ kannen $=39$ pots . . .
Russia: anker $=2$ stekar $=3$ vedro $=30$ crushki ; or 90 pounds of water

18
. . 8.117
Austria : eimer $=4$ viertel $=40$ mass . . 12.460
France : hectolitre of ioo kilogrammes of water.
Italy : soma $=10 \operatorname{mina}=100$ pinte . . .
Holland : vat $=100$ kannen $\}_{22} \cdot 18$
Polish beczka $=25$ garniec $=100$ kwarti . .
Greece : koilon = IOO litra

18	2'887	$8 \mathrm{I} \cdot 751$
15.126	2.426	$68 \cdot 700$
$17 \cdot 282$	2.772	78.489
$8 \cdot 243$	1-322	37437
8.117	$1 \cdot 302$	$36 \cdot 865$
12.460	$1 \cdot 999$	59.589
$22 \cdot 1018$	3.532	100

FORMER, LOCAL, OR SPECIAL VALUES. Germany :-
Anspach, eimer $=66$ mass 19.7003 .160
Altona, Hamburg, Liibeck, and Rostock, eimer $=4$ viertel $=8$ stuibchen

LARGE LIQUID MEASURES-continued.

SWITZERLAND :-

Berne, eimer or brenter $=25$ mass	9•199
Basel, ahm $=8$ viertel $=32$ altemass .	10.018
Arau, brenta $=25$ mass	14.719
Freiburg, brenter $=25$ mass	$8 \cdot 598$
Geneva, setier $=24$ quarterons $=48$ pots	10.062
Glaris, eimer $=4$ viertel $=30 \mathrm{kopf}=60 \mathrm{mass}$	23.506
Saint Gall, eimer $=4$ viertel $=32 \mathrm{mass}$	9.245
Lucerne , $=30$ mass or pots .	11.415
Neufchâtel, setier $=2$ brochets $=16$ pots	$6 \cdot 709$
Schaffhaus, eimer $=4$ viertel $=32$ mass	$9 \cdot 263$
Thurgau ,, $=32 \mathrm{mass}$	11.251
Uri \quad, of 60	23.978
," of 64	$25 \cdot 576$
Waadt, setier $=3$ brocs $=30$ pots	$8 \cdot 917$
Zurich, eimer stadtmass $=4$ viertel $=60$ mass	21.699
Ticino, brenta $=66$ boccale	9758

Holland :--
Amsterdam, anker $=2$ stee
AUSTRIA :-

Eimer $=4$ viertel $=40$ mass 12.460
Hungary, Presburg and Pesth eimer $=64$ icze in 744
Hungary, Tokay antal $=88$ icze $=176$ messli . $16 \cdot 152$
Bohemia, Prague eimer $=32$ pints $=128$ seidel . 13.452
Temeswar kis-czeber = 50 icze . . 9'176
Illyria, Trieste orna $=40$ boccale . . . 12.460
Tyrol, uiren, or yuren $=128$ zimment . . 97782
For Southern Europe see Barrels and Loads.

RUSSIA :-		
Anker $=2$ stekar $=3$ vedro $=40$ bottles		8.117
Narva and Pernau, anker $=$	stof	$8 \cdot 517$
Revel, anker $=5$ viertel $=3$	stof	7-863
Riga ,, =5 , = ${ }^{\text {a }}$	"	7.971
Sumatra :-		
Tub $=10$ sukat $=120$ pakha 14.530		
China :-		
Tche $=10$ teu $=100$ tching		15.412

Cub. ft.	Litres
1-476	$4 \mathrm{I} \cdot 78$
$1 \cdot 607$	45.50
$2 \cdot 361$	66.85
1.379	39.05
$1 \cdot 614$	45.70
$3 \cdot 770$	10676
$1 \cdot 483$	41.99
1.831	51.84
$1 \cdot 076$	$30 \cdot 47$
$1 \cdot 486$	42.07
1805	51-10
3.846	108.90
4. 102	116.16
$1 \cdot 430$	$40 \cdot 50$
3.481	98.55
1.565	44.32
$1 \cdot 370$	$38 \cdot 80$
1.999	$56 \cdot 59$
1.884	53.34
$2 \cdot 591$	73.35
$2 \cdot 158$	6.190
1472	$41 \cdot 68$
1.999	$56 \cdot 59$
1.569	44.43
1-302	$36 \cdot 87$
1/366	38.68
1.261	35.71
$1 \cdot 278$	$36 \cdot 20$
2'331	6598
2•472	$70 \cdot 0$

NOMINAL LIQUID MEASURES.

BARRELS.
Tonne, fässchen, barile, barril, brenta, \&oc.

England: beer and ale barrel $=4$ firkins
Norway and Denmark : toende $=\mathbf{I} 36$ pots . 28.930
Sweden and Finland : tunna $=96$ stop . . $27 \cdot 650$

Germany :-

Berlin, tonne $=100$ quarts, or 6400 cub. in. . $25^{\circ} 211$
Bremen ,, $=48$ stiibchen 34.009
, oil tonne $=$ Berlin tonne . . . 25.21 I
Brunswick tonne $=27$ stiibchen . . . $2 \mathrm{I} \cdot 855$
Gotha ,, $=24$, 19.228
,, brandy tonne = 1 Io kannen . . . 44.065
Hanover, tonne $=26$ stiibchen 22.258
Holstein, Hamburg and Rostock tonne $=32$
stiubchen ; (also one of 48 stuibchen) . . 25 . 506
Liibeck, tonne $=42$ stübchen 33.478
Saxony, Dresden tonne $=70$ visirkannen . . 2I 646
,, Leipzig ,, $=75$ kannen . . 19.878
Oldenburg, tonne $=112$ kannen . . . 33.754
France:-
Tonne de bière (mesure usuelle) $=7 \frac{1}{2}$ veltes (1812-1840)

AUSTRIA :-

Tonne $=2$ imperial eimer $=80$ mass . . . 24.920
Vienna, old tonne $=2$ eimer $=85$ mass . . 26.48 r
Temeswar, nagy-cseber $=2$ kis-cseber . . 18 .352
Cracow, old beczka $=36$ garniec . . . 30.063
Russia :-
Narva and Pernau, tonne $=128$ stof . . . 36.339
Revel, tonne $=\mathbf{I 2} 8$ stof 33.542
Riga,,$=90$, 23.912
,, brandy tonne $=\mathbf{I} 20$ stof $3 \mathrm{I} \cdot 882$
Warsaw, old beczka $=36$ garniec before 1819 . 30.063
Lemberg, old beczka $=36$ garniec ,, . . 30.47 I

French
Scientific

Hectol.
I. 6350

I•3139
[2558

I• 1450
I•5446
I•1450
-. 9926
0.8733
2.0013
r.0109

I•1584
I•5205
-.9831
0.9028

I•5330
0.7500

I•1318
I•2027
0.8335

I•3654

I•6504
I•5234
I.0860

I 4480
$4.822 \quad$ I 3654
$\begin{array}{llll}4 & 888 & \text { I } 3839\end{array}$

The above barrels are for liquids generally, except when otherwise specified, as for Bremen, Gotha, Riga.

NOMINAL LIQUID MEASURES-continued.

Wine barrels and oil barrels.

Spain :-

Aragon, barril $=4$ wine arrobas
Barcelona ,,$=2$ mallals $=32$ mitadellas .
oil barril $=7 \frac{1}{2}$ cortanes $\quad . \quad . \quad 6.804$
Valencia, barril $=3 \frac{3}{4}$ wine arrobas . . . 9.479
Alicante, oil barril $=2 \frac{1}{2}$ oil arrobas
Majorca, cortin $=6 \frac{1}{2}$ corters (wine)
6319
Minorca, barillo $=5 \frac{1}{2}$ quartillos

Gallons		
	1-464	
6.	1-064	0.3014
$6 \cdot 804$	1.091	- 3090
$9 \cdot 479$	1.520	
$6 \cdot 319$	1.014	- 28870
5.976	0.958	
6.942	$1 \cdot 1$	

Spanish barrels are mostly estimated by weight, and vary greatly.

Italy:-

A		1.517	0.4296
Genoa, wine barrel $=50$ pinte	16.344	$2 \cdot 622$	0.7423
oil ,, =64 quarteroni	14.239	2.284	0.6467
Modena, wine ,, = 20 fiaschi	9'173	1-471	0.4166
Naples ,, ,, =60 caraffe	9.604	1.541	$0 \cdot 4362$
Palermo	7.865	$1 \cdot 262$	- 3572
Rome ," ,, $=32$ boccali	12.845	2.060	0.5834
oil " ", $=28$ boccali	12.658	$2 \cdot 030$	- 5.5749
Sardinia, oil, $\bar{\prime}=3 \frac{1}{2}$ pots	$7 \cdot 398$	1-187	- 0.3360
Tuscany, wine, $=20$ fiaschi (wine)	10.036	$1 \cdot 610$	0.4558
," spirits,	9•171	$1 \cdot 471$	0.4165
," oil orchio $=16$ fiaschi (oil)	7.360	$1 \cdot 180$	$0 \cdot 3343$
Bergamo, brenta $=52$ pinte	15.822	2.538	0.7186
Cremona	$32 \cdot 367$	5. 192	I 47
Milan ,, = 16 basse	16.632	$2 \cdot 668$	- $\cdot 755$
Parma	15.853	2.543	$0 \cdot 72$
Piacenza and Reggio, brenta	16.734	$2 \cdot 684$	$0 \cdot 76$
Piedmont, brenta $=36$ pinte	10.850	1.740	0.4928
Verona ,, = 16 basse	15.523	2.490	0.7050
Belluna, mastello $=40$ boccali	16.447	$2 \cdot 638$	- 747 a
Ferrara , = 40	12•194	1.956	0.5538
Padua ,, = 72 bozze	15.699	$2 \cdot 518$	0.7130
Rome , $\quad=40$ boccali	18.081	$2 \cdot 900$	0.8212
Rovigo , $\quad=108$ bozze	23.075	3.701	1.0480
Trevisa \quad, $=36$ boccali di campagna	17.174	2.755	$0 \cdot 78$
Venice \quad, $=64$	14.268	$2 \cdot 289$	- 06480
Vicenza , = 120 bozze	25 '079	$4 \cdot 023$	1-1390
Bologna, corba $=60$ boccali	$16 \cdot 247$	2.606	- 7379
Lucca, coppo $=264$ pounds of oil	21.987	$3 \cdot 527$	0.9986
Mantua, moggio $=320$ pounds of oil .	24.519	33	1•1136

NAL LIQUID MEASUREScontinued. Greece, Mediterranean, \&c. :			
arrel $=24$ boccali (wine and brandy) . 1 and honey barrel $=19 \mathrm{lb}$. or $25^{\frac{1}{3}}$ bocc.	II 284	1.810	5125
I., wine and oil barrel $=4$ jari	15.005	2'407	- 6815
wine and oil barrel $=\mathbf{=}$ = 120 quarfisi, II old	14.690	2,356	-6672
	9.	1.470	0.4162
oil and honey barrels $=84$ centlets	16.972	$2 \cdot 722$	$0 \cdot 7708$
ipoli (Barbary), barrel $=24$ bozze (Venetian).	14.268	$2 \cdot 289$	0.6480
jorca, odre $=12$ cortanes $=48$ quartas	10.681	17713	0.4851
Japan			
to $=100$ shöo $=1000$ göo .	-938	6.407	I.8141

LOADS.

The azm, ahm, ohm, and the tierce.
Denmark, Sweden, and Ger-MANY:-

The ahm is an expression for 4 ankers; in some cases for 20 vierteln or $\frac{2}{3}$ oxhoft (see Ankers and Vierteln, pp. 165, 168, or see Oxhoft).

The exceptional ähmen are :-

NOMINAL LIQUID MEASURES--continued.

LOADS-continued.

Charges, carica, carga, salma, soma, saum.
Switzerland :-
The saum is generally $=100$ mass (see Mass). The exceptional saum were: Basel, 96 altmass; St. Gall, 128 mass ; Grisons, 90 mass ; Schaffhaus and Stein, 128 mass; Wintherthur, 120 mass; Zurich, saums of 90 and of 96 mass.

Spain :-

The carga for wine or oil generally consists of 4 nominal barrels (see Barrels); its value varies locally from 27 to 36 gallons, and is, besides, differently estimated, even by Spanish metrologists.

Italy :-

Soma (metric) $=10 \mathrm{mina} \cdot$ -	22.018
Ancona, soma $=2$ barili $=48$ bocca	
Tuscany ,, (oil) $=2$ barili $=32$ fiaschi	14.719
Rome , , , = 2 mastelli $=80$ boccali	$36 \cdot 165$
Naples, salma ,, $=256$ quarti .	$35 \cdot 660$
Sicily, ordinary wine salma	$18 \cdot 341$
,, Messina wine salma $=8$ barili	19.288
Syracuse salma	
yprus, some or coriche	22

HOGSHEADS.

Oxhoft, oxhufwud, barrica, barrique.

d, hogshead $=\mathbf{I} \frac{1}{2}$ barrel (since 1803)	54	8.662	2.4525
Sweden, oxhufwud $=\mathbf{I} \frac{1}{2}$ awm $=3 \mathrm{embar}$	51.84	8.316	2.3544
Denmark, oxehoved $=1 \frac{1}{2},,=6$ anker	$49 \cdot 457$	$7 \cdot 933$	$2 \cdot 2462$
Germany :-			
Prussian oxheft $=1 \frac{1}{2}$ ahm $=6$ anker	- $45 \cdot 38$	7.279	$2 \cdot 0611$
Hanse towns,, $=\mathbf{I} \frac{1}{2} \quad, \quad=6$	- 47.83	7.671	$2 \cdot 1721$
Brunswick , $=1 \frac{1}{2}$	- $48 \cdot 57$	$7 \cdot 790$	$2 \cdot 2057$
Hanover $\quad, \quad=\mathbf{I} \frac{1}{2}$	51.36	8.239	$2 \cdot 3328$
Lippe-Detmold, oxhoft $=1 \frac{1}{2} \mathrm{ahm}=6$ anker	49.09	7.873	$2 \cdot 2294$
Oldenburg $\quad, \quad=\mathbf{I} \frac{1}{2} \quad,=6$	- $50 \cdot 42$	8.087	$2 \cdot 2899$
Saxony, Dresden , = $\mathbf{r} \frac{1}{2}$	44.53	$7 \cdot 142$	$2 \cdot 0224$
,, Leipzig ," $=1 \frac{1}{2}$,,$=6$	50•10	8.035	$2 \cdot 2752$

PARTI.

NOMINAL LIQUID MEASUREScontinued.
Holland :-
Amsterdam okshoofd $=\mathbf{I} \frac{1}{2}$ aam $=6$ anker .
RUSSIA:-
Russian oxhoft $=12$ stekar $=18$ wedro . . $48 \cdot 70$
Warsaw ", $=60$ garniec (old) . . . $50 \cdot 10$

Southern Europe :---
The barrica of Southern Europe is a term for the half-pipe or demiqueue. (See Pipe.)

San Domingo :-
Barrica $=60$ old wine gallons 49.99

PUNCHEONS, fass, vat, fat, \&va.

Germany :-

Prussian fass, beer or brandy $=\mathbf{2}$ barrels	$50 \cdot 42$	8.088	2.2901
Brunswick fass for mumme $=10$ anker	$80 \cdot 94$	$12 \cdot 983$	$3 \cdot 6762$
Brunswick, for beer = 4	87.42	14:021	3.9703
Gotha , for brandy = I	44.07	7.068	$2 \cdot 0013$
Hanover , for beer	89.03	14:280	4.0434
Liibeck ", \quad, $=1$ Hamburg oil fass $=1 \frac{1}{ \pm}$	31.88	$5 \cdot 114$	I.448I
,, for brandy = I oxhoft	$47 \cdot 83$	7.671	2•1721
Saxony, Dresden fass (beer) $=4$ barrels	$86 \cdot 58$	$13 \cdot 887$	3.9324
," Leipzig , ," $=4$,	79.51	12.754	3.6114
", Dresden , (wine) = 10 anker	74.21	11.904	3.3706
", Leipzig ," , = 10	83.5 C	13.392	3.7919
Austro-Hungary:-			
Bohemian fass (beer or wine) $=4$ eimer	53.81	8.631	2.4438
Presburg , , , $=4$ eimer $=256$ icze	$46 \cdot 98$	7.536	2.1337
Tokay , , (wine) $=2 \frac{3}{4}$ Presburg eimer	$32 \cdot 30$	$5 \cdot 181$	1 4669
Jamaica :-			
Rum puncheon, variable nominal value; actual values between 72 and 108 gallons .	84	13.473	$3 \cdot 815$

NOMINAL LIQUID MEASUREScontinued.

BUTTS AND PIPES, bota, pipa, queue.

Alicante, pipa vino $=40$ arrobas ${ }^{\circ}$. . Ior'7
Barcelona, pipa $($ wine $)=4$ cargas $=64$ wine cor$\left.\begin{array}{l}\text { tans, reputed trade value } 100 \text { gallons } . \\ \text { arcelona, pira }(o i l)=119 \text { oil cortans, same val. }\end{array}\right\}$
Barcelona, pipa (oil) $=119$ oil cor
Cadiz, pipa (oil) $=34$ oil arrobas
Malaga ,, (wine) $=25$ arrobas .
reputed trade
, bota (wine) $=30 \quad, "$ reputed trade
value roo gallons . .
Malaga, pipa (oil) $=34$ Castilian oil arrobas . ,", bota (oil) $=42$,' 16 ," 124 old wine gallons; reputed trade value 100 gallons
Valencia, pipa vino $=42$ cantaros
pipe $($ oil $)=40$ arrobas . ," pipe (oil)=40 arrobas IOI•I , \quad bota, or tonel $=100$ cantaros $. \quad . \quad 252.8$
Xeres, bota vino, 120 old wine gallons, English; reputed trade value 108 imperial gallons . 100
Majorca, pipa (oil) $=108$ cortanes . . . $96 \cdot \mathrm{I}$
Minorca, $\mathrm{pipa}=40$ gerra; reputed trade value 105 gallons .
Malta, pipe $=1$ I barrels

Portugal:-

Lisbon, pipa o bota $=26$ almudes ,", for London, 31 almudes, reputed at 140 wine gallons
Porto, pipa $=21$ almudes, reputed at 115 gallons
Madeira, pipa $=23 \frac{1}{2}$ almudes, reputed at 92 galls.
104.7

94•1
116.2

100

$106 \cdot 2$
$101 \cdot 1$
25

100
$96 \cdot 1$
$106 \cdot 2$ $100 \cdot 8$

$94 \cdot 7$	$15 \cdot 188$	$4 \cdot 3013$
$112 \cdot 9$	$18 \cdot 107$	$5 \cdot 1274$
116	$18 \cdot 598$	$5 \cdot 2662$
92	$14 \cdot 708$	$4 \cdot 1646$

PART I.

NOMINAL LIQUID MEASUREScontinued. Brazil :-			
Rio Janeiro, pipa $=180$ medidas			Hectol.
Bahia, pipa (rum) $=72$ canhadas	112.6	18.032	5•1059
,, ," (molasses) = 100 ,,	. $\quad 156 \cdot \mathrm{I}$	25.045	7.0915
Italy \&c.			
Rome, botta vino $=16$ barili	205.5	32.967	9.3346
Venice, ,, $=10$ mastelli .	- 1422	22.885	6.4800
,, anfora $=8$ mastelli. ,, botta of oil $=2000$ pounds weight.	$\mathrm{II}_{4}{ }^{\text {I }}$	18.308	5.1840
Vicenza ,, $=8$ mastelli $=\frac{1}{2}$ carro.	. $200 \cdot 6$	32.181	9'1120
Naples ," = 12 barili	115.3	18.486	5.2344
S , , pipa $=14$,	I34.5	21567	6.1068
Sardinia, botta $=500$ pinte	$110 \cdot 1$	17.658	5
Messina, bota o pipa $=90$ gallons	90	14.436	$4 \cdot 0876$
Palermo, pipa $=12$ barili	94.4	$15 \cdot 136$	$4 \cdot 2858$
Gallipoli, pipe of oil $=2 \frac{4}{5}$ salme .	$95^{*} 6$	15.327	4.3400
Turin, carro = 10 brente	1085	17.40	4.928
Switzerland :-			
Geneva, char $=12$ setier	$120 \cdot 8$	19.369	5.4844
Waadt, char $=16$ eimer $=48 \mathrm{broc}$	$142 \cdot 7$	22,885	$6 \cdot 4800$

TUNS, FUDER, TONELADA, TONNEAU, STÜCKFASS,
KUFE, FASS.

England, tun of beer or ale $=2$ butts	16	34'65	
,, whale oil $=210$ gallons	210	$33 \cdot 69$	39
,, vegetable oil $=197$ gallons	197	$31 \cdot 60$	8.947
United States, tun $=200$ wine gallons	166.6	26.74	
Norway and Denmark, fuder $=2$ pipes $=4$ oxhoft ,, \quad, \quad stykfad $=1 \frac{1}{4} \quad$ fuder $=30$	197.8	3173	
$\begin{array}{lll} \text { ankar } \\ \text { stykfad }= & =1 \frac{1}{4} & \text { fuder }=30 \\ & \therefore & \therefore \end{array}$	247×3	$39 \cdot 66$	11.230
Former Elsinor tun, for wine, vinegar, and beer	204.2	$32 \cdot 75$	-274
,', ,", of whale oil $=252$ wine gals.	210.0	33	9.539
weden, fuhre $=2$ pipas $=4$ oxhufwud .	2074	33'26	94.48
Germany			
amburg tun of wine, or fass $=4$ oxhoft	$191 \cdot 3$	$30 \cdot 68$	8.688
Danzig fuder $=2$ both or pipes	81.5	$29 \cdot 11$	$8 \cdot 24$
Munich fass $=25$ eimer	$376 \cdot 5$	60.39	17.10
Heidelberg, stiuckfass $=150$ vierteln	$261 \cdot 2$	41.90	II 1 863
Frankfurt $\quad, \quad=\mathbf{I} \frac{1}{3}$ fuder $=8$ ähmen.	25.6	$40 \cdot 52$	11.473
Nuremberg , $\quad=\mathbf{1} \frac{1}{4}, \ldots=15$ eimer .	2424	38.87	11.007
Vienna, dreiling $=3$ fass $=30$ eimer	83	61	

NOMINAL LIQUID MEASUREScontinued.

BREW, BRAU, GEBRÄUDE, BROUWSEL, BRASSIN.
Berlin, gebräude $=9$ kupen $=36$ barrels
Bremen, brau $=45$ scheffeln
Hamburg ,, $=50$ barrels.
Dresden ", $=12$ kufe $=96$ barrels.
Leipzig ,, $=8 \mathrm{kufe}=64 \quad, \quad . \quad . \quad . \quad 35 \cdot 3020406$
Hanover $\because=172$ barrels $\quad, \quad . \quad . \quad . \quad 106 \cdot 3$

Hectol.
41.22
33.333
86.88
94.38
57.78
173.87

DRY MEASURES. ${ }^{1}$

England : the Imperial bushel = 8 gallons; or 80 pounds of water		1.2	
Germany: the Prussian scheffel $=4$ viertel $=16$ metzen $=3072$ cubic inches		$1 \cdot 941$	
Norway and Denmark: the grain skieppe $=4$ fierdingkar $=18$ pott $=972$ cubic inches			
Norway and Denmark : the coal skieppe $=22 \mathrm{p}$		0.7	
Sweden : the spann $=4$ fjerdingar $=16$ kappar $=$ 56 stop $=2.8$ cubic feet .			
Russia: tschetwerik=4 tschetwerka $=8$ garnetz; or 64 funt of water			
Austria : metze $=4$ viertel $=16$ muhlmässl		$2 \cdot 172$	
France : hectolitre of the metric system . .			
Holland: mudde = 10 schepel $=$ roo kop Italy : soma $=10 \mathrm{mina}=100$ pinte Rhenish Bavaria : hektoliter $=8$ simmern	$2 \cdot 75$		
Waadt : quarteron $=10$ mines $=100$ copets $=500$ cubic inches (metric)			
Spain: Castilian fanega $=4$ quartillas $=12$ almudes, standard in 1830			
,		$1 \cdot 910$	54
Uurkey : kiloz of 22 okas of wheat	$0 \cdot 9$	$1 \cdot 240$	

FORMER, LOCAL, AND SPECIAL VALUES.
Germany (Scheffeln):-
Prussian scheffel $=4$ viertel $=16$ metzen $=3072$ cubic inches I.513 1.941
Anhalt, scheffel of Koethen I 458 1.870
Bremen, scheffel $=4$ viertel $=16$ spint ; or 104 lbs . of rye
2.039 2.616

Elsass, scheffel $=$ Parisian boisseau . . . 0.3580 .459
Gotha,,$\quad=2$ viertel $=8$ metzen . . . 2428 bergscheffel $=2920$ cubic inches . . . I•IO6
Hamburg, scheffel (wheat) $=4$ himten $=16$ spint.$\quad 2 \cdot 903$
Hamburg, scheffel (oats) $=6$ himten $=24$ spint $.4 .354 \mid 5.588{ }_{15}{ }_{15} 8.22$ ${ }^{1}$ The values of Small Dry Measures may be obtained by division.

DRY MEASURES-continued. Germany-continued:-	Bushels	 Cub. ft.	
ctoral), scheffel $=2$ himten $=8 \mathrm{me}$	$\cdot 20$	2:834	80.23
Holstein, the Danish skieppe	0	$0 \cdot 6$	17.39
Lippe-Detmold, scheffel (wheat) $=6$ large metzen $=24$ mehlmetzen, 3154 cubic inches	1×21	$1 \cdot 564$	44.29
Lippe-Detmold, scheffel (oats) $=7$ large metze	1.42	1.8	67
Liibeck, scheffel (wheat), 2343 cubic inches	0.919	1.180	33.40
,', ", (oats), 2752	1 -080	1.386	39.24
Mecklenberg Schwerin, scheffel (wheat) $=16$ spint $\quad 4$ viertel		1	
Mecklenburg Schwerin, scheffel (oats)	I 20	1.548	43.82
,, Strelitz, scheffel	1.422	1.824	51.65
Oldenburg, scheffel $=16$ bierkanne		0.773	21.90
Saxe-Weimar ,, $=4$ viertel $=16$ metzen	$2 \cdot 1$	27718	$76 \cdot 97$
Saxony \quad cubic inches of Dresden, since $1719, "=8064$.	2.91	40	105
Wuirtemberg, scheffel $=8$ simri $=32$ viert	$4 \cdot 8$	6.259	177
zuberscheffel $=4 \mathrm{imi}=40$ mass	$2 \cdot 02$	$2 \cdot 595$	73.48
Schleswig, scheffel (wheat)	238	1.589	44.99
", (barley)	I 212	1.555	44
German sest			
varia, metze $=8$ mässl		1/309	37.06
Brunswick, himt $=4$ vierfass $=16$ loech	0.856	1.098	$3 \mathrm{I} \cdot 10$
Baden, sester = 10 mässl = 100 becher	0.413	0.530	15
Strasburg, sester $=4$ vierling $=16$ mässl, townmeasure, 924 cubic inches, Parisian	0.5	$0 \cdot 647$	$8 \cdot 33$
Strasburg, sester country measure, 952 Parisian cubic inches		$0 \cdot 667$	8.88
Rhenish Bavaria, simmer $=4$ vierling		0.441	
Saxe-Coburg, simmer $=4$ viertel $=16$ metzen	24.46	3.099	
Hesse-Darmstadt, simmer $=4$ kuimpfe $=16$ gescheid .	0.88I	$1 \cdot 130$	
Nassau, simmer $=4$ kuimpfe $=16$ gescheid	53	$0 \cdot 966$	
Nuremberg, metz (wheat) $=16$ mass	0.547	0.702	星
, , (oats)	0.506	0.649	18.39
Aust			
Metze $=4$ viertel $=16$ muhlmässl	1.692	$2 \cdot 172$	1.49
Moravia, old metze	1.943	2	$0 \cdot 6$
Bohemia, strich $=4$ viertel $=16$ mässl	$2 \cdot 576$	$3 \cdot 3$	
Hungary, Pesth-Buda metze $=96$ halben, or icze 60 oka weight	$2 \cdot 206$	2.826	
Hungary, Temeswar and Presburg metze, or k $=64$ halben ; or 40 oka weight, after 1808	1 468	1.88	
lyria, Fiume metze of $37 \frac{1}{2}$ wine boccali of 3456			

DRY MEASURES-continued.

AUS'TRIA-continued:-			
	Bushels		S
Illyria, Trieste staro	2.274	$2 \cdot 918$	$82 \cdot 61$
Galicia, Lemberg cwiercek $=8$ garniec $=32 \mathrm{kwarti}$	0.846	$1 \cdot 086$	$30 \cdot 75$
Poland, Cracow cwiercek $=8$ garniec $=32 \mathrm{kwarti}$	0.826	1.060	30.02
Tyrol, staro or star	0.84 I	1.080	$30 \cdot 57$
Dalmatia, Ragusa roupell	0.682	0.875	24.77
Trent, staja . .	0.581	0.746	$2 \mathrm{I} \cdot 12$
RUssia			
Imperial tschetverik $=4$ tschetverka	$0 \cdot 722$	$0 \cdot 926$	$26 \cdot 22$
Pernau, lof $=4$ kulmitz (stricken)	$1 \cdot 743$	$2 \cdot 236$	$63 \cdot 32$
Revel, , = 3 kullmet = 36 stof.	I 085	1.393	39.43
Riga, ", =6, ${ }^{\text {a }}=54$	I. 880	$2 \cdot 412$	$68 \cdot 29$
Warsaw, cwiercek $=8$ metric garniec, litres	0.881	$1 \cdot 130$	32.00
",, = 8 old garniec before 1819	0.830	11065	$30 \cdot 15$
France, Holland, and Belgium :-			
The old Parisian boisseau = 16 litrons	$0 \cdot 358$	0.459	13.01
The boisseau métrique (1812-1840)	$0 \cdot 344$	$0 \cdot 441$	I2.50
Amsterdam, old schepel $=32 \mathrm{koppen}$	0.744	0.954	27.02
Brussels, old halster .	0.671	0'861	24.38
Switzerland :-			
Arau, viertel $=4$ vierling $=16$ mässli	0.620	0.795	$22 \cdot 52$
Basle, sester $=2$ mudde $=8$ kupfli $=16$ becher	- 0.940	1.206	34•16
Berne, mäss $=2$ mässli $=4 \mathrm{immi}$	0.386	0.495	14.01
St. Gall, viertel $=4$ vierling $=16$ mässlein	0.568	0.729	$20 \cdot 65$
Geneva, bichet of 19572 ${ }^{\frac{1}{2}}$ Parisian cubic inches	I•069	1.371	38.83
Grisons $\quad,=4$ quartanen $=16$ mässlein	0.825	1.059	29.99
Lucerne, , $=10$ imni $=16$ becher	0.956	$1 \cdot 227$	34.75
Neufchâtel, setier $=8$ pots $=24$ copets .	0.419	0.538	15.23
, ,', foroats $=25$ copet $=800$ p. c., Paris	0.437	$0 \cdot 560$	15.87
Schaffhausen, viertel $=4$ vierling $=16$ mässlein	0.622	0.798	22.60
Schwytz, Uri, Glaris, Zurich, viertel for corn	$0 \cdot 569$	0.730	0.68
", ", ", ", oats	0.576	88	$20 \cdot 91$
Waadt, quarteron $=10$ mines $=100$ copets $=500$ cubic inches	0.372	0.477	
Wyl, viertel (grain) $=4$ vierling $=16$ mässlein	$0 \cdot 706$	$0 \cdot 806$	$25 \cdot 66$
Zug , (wheat) $=4 \quad, \quad=16 \quad$,	0.618	0.793	22.45
Ticino, large staro of Locarno	$0 \cdot 8$	1.039	29.43
", small ",	0.72	0'926	$26 \cdot 23$
Italy :-			
Soma $=10$ mine $=100$ pinte	$2 \cdot 752$	3.532	100
Bergamo, stajo $=6$ copelle	0.570	0.731	20.75
Bologna , $=4$ quartaroli	$1 \cdot 16$	$1 \cdot 303$	$36 \cdot 90$
Cremona	$0 \cdot 982$	$1 \cdot 260$	$35 \cdot 67$

DRY MEASURES-continued.

DRY MEASURES-continued.

Turkey, \&C.-continued :-

Egypt and Abyssinia
Gondar, ardeb $=$ Io madega
Massowah, ardeb $=24$ madega :
(See also Large Dry M
Tunis and Algiers :-
Tunis, weba $=\mathbf{I} 2$ saa
Tripoli, temen $=4$ orba $=8$ nasforba
Algiers, tarri
Northern India :-
(Grain is sold by weight.)

Southern India:--

Bombay, parah (grain) $=28$ ser measures . . 0.254
Anjar, shahi $=4 \mathrm{map}=32$ palli $" . \quad . \quad . \quad 0.725$
0.855
Cochin, parah $=45$ local measures . . . 0.875
Madras ,, $=40$ measures, or 4000 cubic in. . 1802
Ballari,,$=60$ ser measures . . . 2.023
Bangalur, colagah $=8$ ser measures . . . 0.269
Madura, markal $=6$ measures 0.298
Travancor, parah $=10$ dungalli 0.043
Masulipatam, markal $=12$ zavah $=96$ giddah . o. 391
Negapatam ,, $=4$ measures (grain) . . O•II3
Palamkattah,,$=6$ bazar measures . . 0.270

DRY MEASURES-continued.
Southern India-continued:-

LARGE DRY MEASURES．

GENERAL VALUES．

water ：

Germany ：the Prussian malter $=\mathbf{1 2}$ scheffeln $=$ $2 \mathrm{I} \frac{1}{3}$ cubic feet．

```
8
```

Norway and Denmark ：the toende（barrel）$=$ 4 fierde $=8$ skieppe $=4 \frac{1}{2}$ cubic feet ．．． 3.829
Sweden：the tunna $=\mathbf{2}$ spann $=\mathbf{I I} \mathbf{2}$ stop $=5 \cdot 6$ cubic feet
Sweden ：augmented tunna， $\mathbf{1} 2 \frac{1}{2}$ per cent．added， $=6 \cdot 3$ cubic feet
Russia ：tschetwert $=4$ pajok $=8$ tschetverik； 512 funt of water，or IO pud of wheat ．．． 57772
Austria ：the grain muth $=30$ metzen ．．． $50 \cdot 768$
Spain ：cahiz＝ 12 fanegas ．．．．． $18 \cdot 099$
Portugal ：moio＝ 15 fangas ．．．． 22.326
Turkey ：fortin＝4 kiloz； 2 kanthar of wheat
Syria ：makuk of Aleppo ； 250 rotl of grain ． 22.018
Egypt ：ardeb of Cairo
． 3.865
28.253
6.160

6．416 I．817
China ：ping $=8$ tche
－ 5
$19 \cdot 7785 \cdot 600$

ORMER，LOCAL，AND SPECIAL VALUES．

Germany ：－

ssian malter $=\mathbf{1 2}$ scheffeln ； $21 \frac{1}{3}$ cubic feet	18•152	$23 \cdot 29$	
winspelkarre， 7 cubic feet	$5 \cdot 956$	7.64	$2 \cdot 164$
Anspach，simra of wheat $=17$ metzen	$9 \cdot 306$	$11 \cdot 94$	3.38 I
oats $=576$ mass	$17 \cdot 177$	22．04	$6 \cdot 241$
aireuth,$=16$ maes	13.648	$17 \cdot 51$	4.959
Baden，malter $=10$ sester $=100$ mässl	4．128	$5 \cdot 30$	1.500
Bavaria，scheffel $=6$ metzen $=8944$ cubic inches	$6 \cdot 120$	7．85	$2 \cdot 224$
Brunswick，scheffel $=10$ himten $=40$ vierfass	8.560	10：98	110
Coblentz，malter $=8$ simmern $=32$ sester（stricken）	$5 \cdot 224$	6.70	98
Cöln $\quad, \quad=4$ fässer $=8$ simmern	3.951	$5 \cdot 07$	I 4335
Elsass，sac，or résal $=8$ boisseaux de Paris； 160 poids de marc pounds of wheat	$2 \cdot 8$	$3 \cdot 6$	

LARGE DRY MEASURES-continued.

Germany-continued:-

Homburg, viertel $=4$ himten $=16$ metzen.\quad.
Mainz, malter $=4$ simmern $=16$ kuimpfe.
Lubeck, droemt of wheat $=12$ soheffeln $\quad . \quad .11 .03$

", oats =12 ," . . 1447
Nassau, malter $=4$ simmern $=16$ kiimpfe . . $3 \cdot 010$
Nuremberg, simmer $($ wheat $)=16$ metzen . . 8.755
Oldenburg molt ${ }^{\prime \prime}$ (oats) $=4$ malter $=32$ metzen $16 \cdot 194$
Saxony, malter $=12$ scheffeln (Dresden) . . 34.972
Schleswig and Holstein, the Danish barrel ${ }^{1}$ toende
Schleswig, heitscheff $=2 \frac{1}{2}$ scheffeln
3.829

The winspel of grain.
is in Prussia $=2$ malter; in Brunswick $=4$ scheffeln;
in Hanover $=8 \quad, \quad \begin{aligned} & \text { at Hamburg } \\ & \text { in Saxony }=2, \\ & \text { at Rostock }\end{aligned}=32$,

Austria:-

Grain mïth $=30$ metzen .
Hungary, Temeswar schinek $=2$ metzen; 80° okas
Slavonia, kila $=3 \frac{1}{2}$ Presburg metzen $=224$ halben
Galicia, Lemberg korzec $=4$ kwerki $=32$ garniec
Poland, Cracow korzec $=4$ kwerki $=32$ garniec $\quad 3.306$
Dalmatia, Ragusa stajo $=6$ roupell $\quad . \quad 4.090$
Trent, soma $=8$ staja $4{ }^{\circ} 090$

Russia :-

Imperial tschetwert $=8$ tschetverik ; 512 lbs . of
Finland, Swedish tunna ${ }^{1}$ augmented . .
Finland, Swedish funna ${ }^{1}$ augmented $4 \cdot 536$
Narva, grain barrel ${ }^{1}=4$ viertel $=32$ kapp $. \quad . \quad 4.462$
Pernau ,, , $=2$ lof $=8$ kullmets . . 3.48

[^8]LARGE DRY MEASURES-continued.
RUSSIA-continued:-
Revel, grain barrel ${ }^{1}=3$ lof $=9$ kulmet $=108$ stof . Riga $, \quad, \quad=2, \prime=12 \quad, \quad=108, \prime$.
Warsaw, $=2$ morzec $=4$ kwerki $=32$ garniec (metric).

 France, Holland, and Belgium :-

Arant, malter $=4 \mathrm{miitt}=16$ viertel $\quad . \quad . \quad . \quad 9.916$
Basel, vierzel $=2$ sac $=8$ sester $=64$ kupfli . . ${ }_{7.522}$
Berne, miitt $=12$ maess (11520 cubic inches) $\quad .4 .627$
St. Gall, malter $=2$ miitt $=8$ viertel . . . 4.547

Geneva, $\mathrm{sac}=2$ bichets; 1 ro lbs. of wheat. . $2 \cdot \mathrm{I} 39$ Glaris and Schwytz, the Zurich malters.
Grisons, lädi $=8$ miitt $=44$ viertel
Lucerne, malter $=4$ mütt $=16$ viertel. $36 \cdot 330$
. . 15304
Schaffhausen, grain malter $=2$ miitt $=8$ vi + rtel
Waadt, $\mathrm{sac}=10$ quarterons $=100$ emines . . 3.716 3.355

Wyl, grain malter $=2 \mathrm{mütt}=8$ viertel \quad. 5.65 I
$\begin{aligned} & \text { Zug } \\ & \text { Zurich, " malter (grain) }\end{aligned}=4$ miitt $=16$ viertel ($12 \frac{i}{4}$ cubic feet)
Zurich, malter (oats and vegetable) $=16$ viertel ($12 \frac{7}{18}$ cubic feet)

9•209
Italy:-
Ancona, rubbio $=8$ coppe 7.874
Bergamo, soma $=8$ staja 4.56 I
Bologna, corba $=2$ stari $=8$ quartaroli . . 2.03 I
Brescia, soma $=12$ quarti 3.046
Cremona, sac $=3$ staja 2.945
Ferrara, moggio $=20$ staje 17.226
Genoa, mina $=8$ quarti $=96$ gombette . . 3.322
Milan, rubbio $=2$ moggia $=16$ staja . . . 8.049
Modena, saco $=2$ staja 3.496
Padua, moggio $=12$ staje 9.572
Piedmont, sacco $=5$ emine $=10$ quartieri . . $3 \cdot 165$
Reggio , $=2$ staja 3.275

Cub. ft.
4. 18
$4 \cdot 82$
$4 \cdot 52$
$4 \cdot 26$
$5 \cdot 51$

7.35	1.561
2.081	

$11 \cdot 03 \quad 3 \cdot 122$
$14 \cdot 70$
$2 \cdot 86$
10:33
$12 \cdot 73$
9.65
5.94
5.83
$2 \cdot 74$
$46 \cdot 6$
19.64
$4 \cdot 31$
6.39
$4 \cdot 77$
$7 \cdot 25$
12.68
$11 \cdot 68$
$11 \cdot 82$

)	$2 \cdot 861$
$5 \cdot 85$	I 657
$2 \cdot 61$	$0 \cdot 738$
$3 \cdot 92$	1-107
$5 \cdot 16$	1. 460
3.78	I 070
$22 \cdot 11$	$6 \cdot 259$
$4 \cdot 26$	I 207
10.33	2.925
$4 \cdot 49$	I. 270
12.28	3.478
4.06	I'150
$4 \cdot 2$	I'19

[^9]
LARGE DRY MEASURES-continued.

Italy-continued:-
Rome, rubbio $=12$ staja $8 \cdot 103$
Tuscany, rubbio $=3 \frac{3}{4}$ sacchi $=11 \frac{1}{4}$ staja . . 7.54 I ,, moggio $=8$,, $=24$ staji . . . 16.091
Venice $\quad, \quad=4$ stari $=16$ quarti . . 9.172
Verona, sacco $=3$ minelli $=12$,, . . . $3 \cdot 157$
Vicenza ,, $=4$ staja 2.978
Sicily, salma $=4$ bisaccie 7.543
Naples, carro $=36$ tomoli 54718

Spain and South America :-

Castilian cahiz $=12$ fanegas $=52700$ pul. cub. . 18.099
$\begin{array}{llll}\text { Alicante } & =12 \text { barcellas }=48 \text { almudes } . & . & 6 \cdot 78 \mathrm{I} \\ \text { Aragon } & =8 & =8 \text { fanegas }=96 & , \\ \text { Valencia } & =12 \text { barcellas }=48 & . & 4.968 \\ & & . & 549\end{array}$
Valencia,,$=12$ barcellas $=48 \quad, \quad . \quad .5 .649$
Barceluna, salma $=48$ cortanes $. \quad . \quad 7.816$
Buenos Ayres, cahiz $=3 \frac{3}{4}$ fanegas . . . 13.63 I
Portugal and Brazil :-
Moio for grain and salt $=15$ fangas $=60$ alqueiras . $22 \cdot 326$
Moio for lime $=50$ alqueiras 18.605
,, for limestone $=30$ alqueiras . . . in 163
Turkey, Levant, \&c.:-
Fortin $=4$ kiloz of 2 canthar of wheat . . 3.865
Bucharest, kile $=2$ mirze $=16$ demerli ; 256 oka of wheat IO. 833
Ibrahil, kilo of 400 oka of wheat . . . 17.614
Moldavia, Galatz kilo II 284
Salonica, kilo of 85 oka 5.337
Corfu and Paxos, moggio $=8$ misure . . . 4.635
Thiaki, moggio $=5$ bacile 4.844
Malta, salma rasa $=16$ tummoli 8.000
Syria :-
Aleppo, makuk of 250 rottal 22.018
Smyrna, fortin $=4$ kiloz 5.648
Acre ardeb 9.358

Egypt:-

Alexandria, kilo of 202 Amsterdam koppen . 4.694

Cairo, flax ardeb $=4 \frac{4}{5}$ Imperial bushels . . 4.800 For Abyssinia see p. 183 .

French
Scientific
Equivalent.
Hectols.
2.944
$2 \cdot 740$
$5 \cdot 846$
3.333

I•147
I.082
2.741

I9.88I
$6 \cdot 576$
2.464
I. 805
2.053
2.840
4.953

8•112
$6 \cdot 760$
4.056

I 404
3.936
$6 \cdot 400$
4.250
1.939
I. 684
I.760
2.907
$8 \cdot 000$
2052
3.400
1.706
2.816
$14.35 \quad 4.062$
6.16

I 744

LARGE DRY MEASURES-continued.

Tunis, Morocco, Algiers:-
Morocco, almud, or mud 5
Algiers, caffiso $=16$ tarri 8.737

Persia :-
No measures of capacity.

Nor'rhern India:-

In Moslem Asia generally, grain is sold by weight, and measures of capacity are rarely used.
Sindh, karwal $=60$ cossah 19.266

Southern India :-

Anjar kulsey $=19$ shai 13.688
Bombay, the kandi $=8$ parah of grain . . . 2.032
rice kandi $=12$, , , . . . 3.044
,", mora or muddi $=25$ grain parah . . 6.342
$\begin{aligned} & \text { Madras, kandi }=4 \text { parah } \\ & \text { Colombo ammonam }=8\end{aligned} . \quad . \quad . \quad .7 .208$
Colombo, ammonam $=8$, ', ${ }^{\text {The kandi of capacity in Southern India corre- }} 5.623$
The kandi of capacity in Southern India corresponds to the kandi of weight of various merchandise, it hence varies greatly. Estimation by weight is the more usual method.

China :-

NOMINAL DRY MEASURES.

Grain Lasts. GENERAL AND FORMER LOCAL UNITS.			Hectols.
England : grain	10	102.66	67
Danish and Norwegian: last =22 toende (barrels) or 99 cubic feet .	10.530	108.09	
Sweden : last of rye $=24$ tunna (augmented)	3.609	139.70	39.558
," ," barley = 27 ,	15.310	157	44.503
," oats $=30$	17.011	174.63	49
Ge			
Prussian last of wheat or rye $=6$ matlern $=128$ cubic feet	13.614	13975	
Prussian last of barley or oats $=4$ maltern .	$9{ }^{\circ} 76$	93.17	
Bremen, last $=40$ scheffeln	$10 \cdot 193$	104'64	29.628
Brunswick, last $=10$	$0 \cdot 698$	109.85	$31 \cdot 103$
Hamburg , $=60$ fässer	10.887	11176	31
Hanover $\quad, \quad=16$ maltern	10.271	105.45	29
Liubeck barrels , of wheat $=8$ droemten $=24$		$113 \cdot 27$	
Liibeck, last of oats $=8$ droemten	.958	133.02	$37 \cdot 664$
Oldenberg, last $=18$ barrels $=144$ scheffeln	10.849	111'37	-535
Rostock, last of wheat $=8$ droemten	12.844	13185	$37 \cdot 336$
,, ,, oats $=8$ droemten	14.47 I	148.56	$42 \cdot 064$
Russia			
rain last $=19$ tschetwert		18.51	33.55
inland (see Swedish lasts)			
Narva, last $=24$ barrels $=96$ vierte	析	137.4	38.90
Pernau, last $=24$ barrels $=48$ lof	10.46	$107 \cdot 3$	
Revel, last $=24$ barrels $=72$ lof	9×7	$100 \cdot 3$	
Riga, rye last $=15$ tschetwert	10.823	111+10	31.458
," wheat and barley last = 16 tschetwert	II 544	118.51	33.55
oats last $=20$ tschetwert	14.430	$148 \cdot 13$	41.944
Warsaw ,, = 30 korzec (metric)	13.211	135'62	$38 \cdot 400$
,, 30 ancient korzec, before 1819	12.448	127.79	36-183
Holland and Belgium :-			
Amsterdam, metric last $=3$ mètres cubes $=30$ mudden $=300$ schepeln	10.321	105'95	
Old Amsterdam last $=36$ sacs (grain)	$10 \cdot 039$	103.06	29.182
Southern Europe and Americ			
Spanish last $=3$ cahices	9.049	$92 \cdot 90$	
Buenos Ayres, last $=4$ cahices .	$6 \cdot 816$	69'96	19.8

NOMINAL DKY MEASUREScontinued. Southern Europe and America-continued:-			
Lisbon and Brazilian last $=4$ moios $=60$ fangas.	II 163	114'60	32.
Syria, garava		51.21	14.50
Genoa, last $=25$ mines	$10 \cdot 381$	106.57	$30 \cdot 175$
Livorno ,, $=40$ sacchi $=120$ staji		103.24	29.232
Northern India :-(Grain is sold by weight.)			
Calcutta, kahun	004	61'63	17.45
Southern India and Burma :-			
Cambay, coyang	8.257	76	24
Madras, garsah $=20 \mathrm{kandi}=80$ parah	18.025	$185 \cdot 03$	52.391
Masulipatam, garsah $=5 \mathrm{kandi}=400$ markal	19.53	$200 \cdot 49$	$56 \cdot 768$
Maisur, garsah $=5 \mathbf{2 1}$ pukkaser .	$2 \cdot 196$	$22 \cdot 54$	$6 \cdot 383$
Pondicherri, garsah $=600$ markal	14.445	148.29	41-988
Colombo, last $=75$ parah	$6 \cdot 595$	67.70	$19 \cdot 17$
Ceylon, garsah $=25$ ammonam .	17.548	$180 \cdot 26$	51.081
Rangoon, coyan = IOO baskets .	10.417	106'9	$30 \cdot 28$
Malacca, \&c.			
Malacca, coyang $=80$ mass, or sacks	11-009	113.01	
Thai (Siam), cohi $=40$ seste	11.009	11301	32
Thai, coyan $=80$ thangsat	5215	53.54	15.1
Malacca, last $=50$ mass, or sacks	$6 \cdot 881$	$70 \cdot 63$	
Singapore, coyang $=40$ sacks, or pecul	12.248	$125 \cdot 73$	$35^{\circ} 60$
Sumatra and Fort Marlborough :-			
Sumatra, coyang $=80$ tub $=800$ sukat	18.16	186.49	
Bencoolen and Fort M. coyang = 800 kula	$12 \cdot 166$	116.47	35.36
Palembang, coyang $=80$ balli	13.486	$138 \cdot 44$	39.2
Acheen, coyang $=100$ nelli $=800 \mathrm{bambu}$	6.004	$61 \cdot 63$	17.45
Java, Borneo, Moluccas, Celebes :-			
Amboyna, coyang, 3000 lbs . T. D. rice	09	68	19.5
Bantam $\quad, \quad=200$ gantam, 8000 lbs . T. D.	17.890	$183 \cdot 65$	52.0
Batavia $\quad, \quad=230$ gantam, 3375 lbs. T. D.	7.819	7770	22.0
South Africa :-			
Cape of Good Hope, last $=46$ balli $=230$ gantang of 3200 lbs . (Dutch Troy) of wheat	7.283	7473	2I•1

Lasts of miscellaneous merchandise are either based on weight, as weight-lasts ; or on cubic measure, as shipping-tons, or lasts of measurement. For lasts of capacity used in the Baltic trade, deduce from values of barrels, given in the text at pp. 156 and 157 .

CHAPTER VI.

MEASURES OF WEIGHT.

THE classification of measures of weight into two categories,
i. Purely commercial,
2. Monetary and medicinal,
is the method most usually adopted by metrologists, and is also a convenient mode of separating the voluminous amount of and variety of weights in use throughout the world.

Medicinal weights are necessarily small, so also are those for precious metals and precious stones, while the commercial weights have an enormous range, from the granottino of Turin, of which 165888 went to a rather small pound, up to the Russian perma of nearly four tons, a very large unit approached by the Spanish cajon of about two tons, and only seriously exceeded by the enormous maniasa of Bhopal and Malwah, which vary from about 15 to nearly 22 English tons.

There appears, however, never to have been any actual need for separate monetary and commercial systems of weight, although the smaller subdivisions necessary to a monetary system as well as to a medicinal one would require an arrangement suited to the greater delicacy and refinement of the operations of testing
money and compounding minute quantities of drugs. On examining the old English monetary system of weight, in which the still used Troy grain was divided into II 520 periots, and the periot into 24 blanks, units actually used and referred to in old records, the conclusion at once suggests itself that any such grain whether commercial or not would have answered the same purpose, apart from the disadvantages accompanying a change. The principle of selection is the same when applied to measures intended for one purpose as it is to another ; a unit is to be forthcoming at the points of a general scale where convenience demands them, and the secondary units in the scale must be multiples and submultiples of those units placed at other convenient points in the scale. A single system of measures may hence be made to include any multiples and submultiples to any degree of any one unit once determined, without adopting the coarse expedients either of a detached system, or of borrowing foreign-units.

It is only very recently that the principle of systematic uniformity has been thoroughly and entirely accepted in England. The old apothecaries' weightsystem and the old Troy weight-system are now nominally discarded, and will become really obsolete very shortly after some perfect mode of supplanting them is arranged.

At present the Troy ounce is the marked relic of that system, the Canadian Government having obtained standards of the Troy ounce from England as late as 1875 ; and the apothecaries' dram of 60 grains cannot be expected either to make way for the inconvenient avoirdupois dram of 27.3475 grains, or to be practically abolished until some more perfect arrangement
be made ; the abolition and the transition are incomplete.

The adjustment of this matter appears to involve much difficulty. The practical requirements are that the dram should consist both of some convenient submultiple of the ounce, and be some convenient multiple of the grain, so as to admit of halving and quartering in aliquot numbers. The difficulties result from the unfortunate conjunction of the binary and the septimal modes; the pound is divided by one method into sixteenths or ounces, and those again into sixteenths, thus arriving at the 256 th part in one mode, while the pound is also divided into 7000 parts or grains on another method. The advantages of both binary and decimal modes cannot be preserved in a septimal system ; the halving and quartering, doubling and quadrupling in a binary system are of practical convenience in actual weighing, while the decimal multiplication and division is convenient when dealing with far-separated units, and generally facilitates calculation; the question therefore arises, which advantages should be preserved, and which rejected.

Considering the English system as a whole, and bearing in mind that the capacity-measures are binary throughout, a corresponding mode might appear suitable also in the series of weights.

The cause of the difficulty is evidently inherent in the original engrafting of the Troy system on to the avoirdupois system, each of which were complete and convenient to a certain degree.

The old Troy pound consisted of 5760 grains Troy, and the avoirdupois pound of 7680 grains avoirdupois ; both of these pounds were quite unnecessarily
introduced from France into England, and eventually a combination was effected, the avoirdupois grain was abolished and the ayoirdupois pound was declared equal to 7000 grains Troy exactly ; the convenient subdivision of this purely accidental number 7000 in accordance with the traditional submultiples of either one class or the other is the apparent stumbling-block.

Before the introduction of these foreign measures of weight, the Anglo-Saxon or real English weights answered every purpose, and were much superior to the innovations, said to have been imported by the Black Prince after the annexation of France.

The Anglo-Saxon moneyer's pound, afterwards termed the Tower pound, consisted of 12 ounces, or 20 shillings, or 240 pence ; and the pennyweight being 32 grains, this pound was 7680 Anglo-Saxon grains; the merchant's pound consisted of 15 such ounces or of 9600 Anglo-Saxon grains (0.703125 grs. Troy). The values of these pounds given in the tables are based on the data given in the Reports of the Warden of the Standards. The Anglo-Saxon ounce hence was 640 grains, a number admitting of continuous halving down to 5 grains. The analogy between this subdivision of the merchant's pound into 9600 grains, and the existing subdivision of the pint into 9600 minims, affords evidence of the natural English method of suiting their measures to their own practical requirements, and of their marked preference for binary subdivision.

The monetary weights of olden time were of much greater importance than the commercial weights, and show traces of greater care and nicety of arrangement. The repeated weighing of money, of which much was debased, clipped, defective, and very irregular in form,
was then a necessity ; while at present improved coinage and severe penal enactment render it comparatively needless, and at the same time principally confine monetary measures to the hands of a special and limited number of persons. In fact, recognition of coin and the acceptance of tokens of perfect form has superseded weighing money as a general rule ; the scale is not now much used for silver coin, and though retained for gold coin it is perhaps not used for more than five per cent. of the cases where gold coin is accepted in ordinary trade of the country. Such a custom could never have existed with the pieces of money, crooked, much battered, and very variable, that have been handed down to us from antiquity, nor before the penal edicts that provide imprisonment for half a life-time as the meed for making payment with a bad shilling, or as it is termed, uttering base coin. Comparatively modern experience in India with the rupees of native States proves the necessity for perpetual weighing that must have similarly been required not only with the silver pence of the AngloSaxon period, but, if we may judge from the comparative rarity of perfect ancient pieces of money, also with the mass of the money of all nations in olden time.

At present, an unknown coin is either rejected or valued as so much metal, and the reputed fineness of the coins and tokens of other countries is the basis of their valuation. Not only is Troy weight now unnecessary, but it always was so ; for, on examining the whole of the old Continental monetary systems, fully three quarters of them were merely marc systems, in which the marc was exactly half a commercial pound (the cases in which it was two-thirds are exceptional) ; the marc was divided into 16 lodes, or loth, in the same
way as the pound was divided into 16 ounces, and the commercial units were simply doubled monetary units. If then a unit approximating to the present avoirdupois ounce is not now suited to the requirements of Mintofficials, and a smaller unit be necessary, the adoption of a monetary marc of half a pound, or even merely of a monetary lode of half an ounce, would be sufficient for all purposes, provided the subdivision were also rendered convenient.

The English subdivision of the Troy ounce was-
I ounce $=20$ pennyweights $=480$ grains $=9600$ mites
and the mite was anciently divided into-

$$
24 \text { doits }=5.76 \text { periots }=\mathrm{I} 3824 \text { blanks. }
$$

The latter series has been long discarded as unnecessary, but the former part, the subdivision of the ounce into 9600 parts, follows the natural and typical English method, formerly applied to the merchant's pound and still applied to the pint, that will probably be never improved upon for practical purposes, although it is inferior for purposes of very rapid calculation.

The subdivision of the Cöln loth, which was the 16 th of the Cöln marc, or Continental unit of monetary measure, was: I loth, or lode $=4$ drams or quentchen $=16$ pfennig or pennyweights $=32$ heller $=272$ ässchen, but the further division of the ass was unsystematic and clumsy.

It may here be noticed that the marcs or halfpounds mentioned in the tables of Continental commercial pounds were not necessarily units of monetary weight, for in a few cases they were mere commercial
submultiples: besides this the term marc was frequently applied to a unit of fineness of metal in distinction to a fixed value either of commercial or monetary weight, and in that form was the basis of a ratio, differently expressed for gold and for silver. A marc cannot therefore be invariably treated as a monetary half-pound when mentioned in connection with Continental systems.

The modes of subdivision above mentioned, indicate practical requirements to be remembered when superseding the old Troy weight by new arrangements. There is, however, another alternative method of arranging new measures and their subdivision ; it consists in entirely ignoring all practical requirements and all the convenience afforded by choice of suitable unit, in forming a rigid decimal scale based on any unit whatever taken at hazard, and depending on the chance that some one of the decimal sub-multiples will be near enough to answer any required purpose. Such a method is generally attributed to scientific men that are indifferent to the public convenience, and is stigmatised perhaps justly, as a very coarse and unscientific mode of doing things ; though more strictly it amounts to a mode of avoiding the care and thought involved in producing anything useful.

The former apothecaries' weights in use in Europe are mentioned in the tables of medicinal systems. The Nuremberg medicinal pound and system of subdivision was that most widely adopted, in the same way as the Cöln commercial pound was most generally used for mercantile purposes throughout Northern Europe.

The special requirements of apothecaries' weight do not appear to vary much from those of monetary weight and hence English Troy weight was apothecaries
weight for a considerable time ; there is, however, one practical requirement of the compounder that calls for attention, the connection between the weight-measures and the capacity-measures. The ounce-weight should be the weight of a fluid ounce of water, and correspondingly also for the dram and fluid dram, grain and fluid grain, and any other such measures. This principle has been admitted in England by the modern adoption of the fluid ounce, and the recent adoption of the liquid grain measure ; at present the English apothecaries' system of both weight and measure seems to be resolving itself into the employment of a single unit of weight, the grain weight, and a single unit of measure, the liquid grain, with their decimal multiples -an arrangement that possesses the advantage of extreme simplicity.

The purely commercial weights of almost all nations present a tolerably general similarity. Most nations possess some sort of pound, rotl or catti, or some approximate double-pound, oka, ser, or small man; and these form the standard units of which all others are multiples and sub-multiples.

The origin of these pounds was in most cases an Oriental rotl of very ancient date ; and it was an unfortunate custom formerly to take the linear square and cubic measures of a nation from one source, while adopting weight-units from another. In other cases the pound is a unit dependent on the weight of water contained in a cubic measure, based on some linear units of national measure, as in the case of the Danish pound, and the Prussian pound, respectively the 62 nd and the 66th part of a cubic foot of water of local measure.

The avoirdupois pound falls in the former of these
classes, but its French origin cannot be distinctly assigned ; and as it is not exactly the $\frac{16}{1000}$ of an English cubic foot of water, although nearly so, it is hence a most unfortunate and inexact unit. Even its name, avoirdupois, is not capable of perfect explanation ; from its being mentioned as a haberty-pound, it is supposed to have been a weight used for averia, haberties, or movable goods and commodities, in distinction to money and valuables. Its value does not indicate connection with the weights of the pile de Charlemagne, or explain its history and derivation. Its utility in England is simply due to the fact that the English are now habituated to a measure of that value ; its historic associations would not be injured by putting it in strict adjustment with cubic measure, and making it exactly the $\frac{16}{100}$ th of a cubic foot; and the variation introduced would be so small as to be unimportant in the generality of commercial matters, less than $\frac{1}{3}$ per cent.

An English pound on this principle would render the whole English series systematic. Several of the German pounds are degraded values of the ancient and historic unit, the Cöln pound, while others have not their individual origin historically assignable.

The metric pound of France, in use from 1812 to 1840, was a metric approximation to the livre poids de marc, in use before that period, the former being half a kilogramme, 500 grammes; the latter, 489.5 grammes. This last was divided into 2 marcs, 16 ounces, 128 gros, 384 scrupules or deniers, or 9216 grains, and was supposed to be a unit belonging to the French series, denominated the pile de Charlemagne, and based on a yusdruma sent by the Khalif Almamun to Charlemagne. The actual liure esterlin of Charlemagne is reputed to
have had a value of $367 \cdot \mathrm{I}$ grammes, or $5666 \frac{1}{4}$ English grains, and to have been in value $\mathrm{I} \frac{1}{2}$ marc of the French monetary system in the middle ages.

On referring to the tables of former Italian pounds, it will be noticed that some of them either are avowed rottoli or happen to be indiscriminately termed libbre or rottoli, while the same principle holds with pounds of the Levant and the Mediterranean. In some of these places, the rottal and the pound preserve some aliquot ratio to each other, but this does not occur sufficiently often for the purpose of drawing any general conclusion. The values of these rottal, however, afford useful indication. Apart from one or two very exceptional rottal, such as the very small one of Jidda, the remainder may be divided into two very marked classes, the large ones, of about two English pounds and upwards, and the ordinary ones, about thirty-two in number, that group well together as approximations to the commercial pounds of Northern Europe, and to the avoirdupois pound more specially ; those of the latter group never approximating to the Northern marcs and monetary pounds. There is therefore sufficient reason for supposing that the mercantile pounds of Europe are rottals by origin ; the other alternative is to suppose them to be simply double-marcs, or augmented marcs.

If the marc was the original unit, preserved in value in the form of current money through a barbarous epoch, and the commercial pounds were afterwards formed, when wanted, either by doubling it, or by adding a half to the monetary pound, or augmented marc (both methods being in vogue from Spain to North Germany), the origin of commercial pounds may then be entirely independent of Oriental derivation.

The closeness of value of the ancient Cöln marc-233.8 grammes or 3608 grains Troy-to the Charlemagne marc, 24477 grammes, places the old French and German pounds in the same category as regards origin, which probably dated from before that period in the earlier ages when France was entirely overrun and occupied by races from Germany. The French monetary pound is historically assumed to have been a yusdruma or later Arab pound, and a corresponding connection may also have existed with the German pounds. There is hence just as much reason for believing the $1 \frac{1}{2}$-marc units or monetary pounds to have been generally yusdruma, as for considering the 2 -marc units or commercial pounds to have been rottals, in the vast majority of cases ; and both of these theories seem equally probable.

The ordinary rottal seems to have been very widely adopted eastward as well as westward, going as far as Persia and India, being known still in Maisur and Travancore and Goa; it is also possible that the thingof China, known to the English as the catti, was also either a rottal or a mina.

The Arab units are believed to have been thus connected :-

```
I canthar \(=44\) oka \(=100\) rottal \(=132\) yusdruma.
I yusdruma \(=12\) wakia (ounces) \(=120\) dirhem
    (drachms).
I dirhem \(=4\) obole \(=6\) danik \(=12\) kirat (carats \()=48\)
    chabba (grains).
```

But there were also earlier units of the same name, but diversely derived, and hence of slightly different values; and besides metrologists have different opinions on this particular subject. Taking the accepted value of the
later canthar, the rottal corresponding to it must have been 7238 English grains, and the yusdruma 5483 English grains ; but the older yusdruma is estimated to have been 5666 grains, and this is the one that probably was a really ancient mina, and not a yusdruma in the strict sense, its antiquity in Almamun's time making it a valuable present to Charlemagne. Without prolonging this subject of endless discussion, it may be noticed that the above-mentioned Arab units of weight appear to have formed the basic units of weight for almost all nations, and to have remained so to the present day, in the same way as the Arabic numerical notation. The exceptional races that have neither an approximate oka, mina, rottal, yusdruma, or a cheki, are comparatively few, and may have some older but more specially local weights. There appears to have been only one fresh point of departure, the kilogramme des archives of unknown density ; while the few modified pounds of Europe, adapted to local cubic measure of water, corn, or other substance, are probably systematised approximations to former and more ancient pounds of the type of the Arab rottal.

Leaving the pounds and rottoli of Europe for the oka of the Levant, that shows its origin in its name, the ser and the man (called by the English the seer and the mun or maund) come next in order for consideration. First taking the Persian and present Arab man, which is an exceptionally small one of its name, this generally varies from 2 to 7 lbs . in value only, being a small multiple of the local rottal ; but there are also some double, royal, and special Persian man that are mere augmentations on the ordinary value.

The mass of the larger seers, or ser, of India seem to
be undoubtedly okas by origin, more especially the typical and common North-Indian seer of 80 rupees, which approximates to the oka in value. Some of the small local and mostly South-Indian seers were probably ancient units of quite another class, belonging to some former régime and older races ; these were, in accordance with Oriental custom, kept up and represented by the weight of a certain number of local current coins. The older races and dynasties being driven south by invading races from the north-west and west, the older seers, or kuchcha ser, are hence found in Southern India. They are generally nominally based on pagodas, starpagodas, and curious antique rupees, some of which are mere lumps of pure silver with a just perceptible trace of a stamp of perhaps one letter of the name of some ancient chief.

There is also another very marked distinction to be drawn between the proper or pukka ser of Northern India, and the small or kuchcha ser of Southern India. They are both units of connection between monetary weight and commercial weight, thus corresponding to the marc and monetary pounds of Europe, and hence fall in both categories as far as estimation and numerical calculation is concerned. But the pukka ser of Northern India is fairly employed and adapted to both purposes, so that a seer of silver, or of oil, grain, or of anything, is an ordinary expression, while the kuchcha ser of Southern India has seldom held so important a position as regards commercial weight, the viss of five kuchcha sers there being the distinctive commercial unit. The values of the viss are hence given in the following tables in addition to those of the ser, all of which are collected and given together. The pussurree or
pasari, the measure of five pukka seers in Northern India, is the unit parallel to the viss on the other scale, but is comparatively seldom referred to, being a nominal multiple and not a distinctive unit.

It is this change from the northern ser to the southern viss, or from a chosen unit of about $2 \frac{1}{4} \mathrm{lbs}$. corresponding to the Arab oka to another unit of about 3 to $3 \frac{1}{3}$ lbs. of indigenous origin, that marks an important transition in system of measure. There is also a corresponding transition in civilisation to be noticed in passing from Northern to Southern India, which has earned for the southern provinces the appellation of 'the realms of the benighted.' This expression of the idea may be an exaggeration in language, yet the actual facts not only remain but may be fully accounted for.

Indian civilisation, whether considered semi-civilisation or not, was that of Northern India as regards origin and historic association ; the Rajput ascendency, the Brahmanical supremacy, the Buddhist reactionary sway, and the Mughal dominion, each supported a civilisation of their own in Northern India for a considerable period, and with an important amount of homogeneity in each case, before being successively broken up and supplanted.

The Dakhan, Southern India, and the two coasts, never received corresponding advantages to such a widely-spread extent; the Telingi, Tamil, Mahratta, Maisur, and the Haidarabad developments were local and confined round certain centres, while the coasts obtained their enlightenment from a fitful commercial intercourse with distant nations. The permanence and grandeur of the northern civilisation, when pressed southward, was invariably frittered into fractions; while the old substratum of less-expanded and more aboriginal
ideas and customs remained steadfast, and was accompanied by the retention of the older and more primitive measures in the lower part of the peninsula.

Proceeding eastward, the Malayan and Indo-Chinese weights appear to be of an intermediate or mixed type ; as the Indian Buddhist exodus took Indian weights further east; while the more purely Malayan races brought Chinese weights westward ; some of the weights hence belong to one category, some to the other, as regards origin, although their names may vary considerably.

The Chinese tching or pound is the standard unit of weight in China, and is locally peculiar in its subdivision, being divided into 16 liang or ounces ; this is in marked contradistinction to Chinese habits of thought, which are rigidly decimal. The Chinese divide anything and everything into fun, li, $h \bar{a} o$, and $s s a$, or tenths, hundredths, thousandths, and myriadths, going on further to the infinitely small in the same way. A common fraction is comparatively unknown to them and requires special explanation ; such a thing as a sixteenth could hardly have entered their unaided minds; hence the tching and liang must have been importations. Their origin may be a matter of mere surmise, but even this does not offer a very wide range of choice.

The value of the tching, I 325 lbs ., or 9275 grains English, may indicate some Chaldæan or early Egyptian mina of a large and primitive type for its source, but as all trace of sexagesimal subdivision, as well as of decimal subdivision, is missing, this objection seems almost conclusive. In the second place, it may have been an Arab rottal of the larger type introduced with and by the Moslem, and may have followed the same rule as the European commer-
cial pounds, being treated as I6 wakia or ounces, of which about 12 went to the yusdruma, although, as before explained, the rottals were not generally exactly I 6 wakia.

Thirdly, the tching may have been a borrowed Dutch commercial pound of 16 ounces, augmented for increased size and consequent imaginary grandeur, while its antiquity may have been an Oriental invention; this origin becomes more probable from the reason that the Chinese itinerary measure the pou of 10 li is believed to be a Dutch league. But the fact that the Chinese pikul of 100 tching corresponds proportionately to the Arab canthar of 100 rottal, while also any unit of io tching or io rottal is entirely absent.in both scales, may be considered as evidence that the trio of Chinese weight, pikul, tching, and liang, are derived from the Arab canthar, rottal, and wakia.

The tching, when termed a catti (a word that is not Chinese), is a modified and an export tching used in foreign trade only; the English making it exactly $\mathrm{I}_{\frac{1}{3}}$ pounds avoirdupois, the Dutch sometimes $1 \frac{1}{4}$ and sometimes $\mathrm{I} \frac{1}{5}$ pounds Troy Dutch, the Spaniards 22 Castilian ounces; in these forms it is used all over the Chinese Archipelago and the Indian Ocean, in Borneo Sumatra, and Malacca.

The Japanese have a national picul, tching, and liang of their own, that probably were borrowed from China and afterwards varied from accidental fluctuation of standard.

Large Units.-The larger measures of weight among almost all nations are multiples of their standard units, the pounds, rottals, sers, okas, viss, and tching ; and hence require but little comment. The values of
the stone, being dependent on those of the smaller units, may be obtained by applying the ratios given in the tables. The European liespfunds are units of this class.

The Indian dharri is a stone; it is invariably a quarter of a maund, but varies from 6 to 15 pounds in value.

In Turkey, Syria, Arabia, and Persia the man or batman is generally a small unit corresponding to the stone.

In Malacca, the capin of 10 vis is a unit near the value of an English foot-weight or talent.

The English foot-weight, of I 000 millesimal ounces or 62.32 I lbs . av., may be considered an approximate halfhundredweight, essentially necessary in the systematisation of the English system. (See Scientific Systems.)

The values of the centners, centals, quintals, and hundredweights of Europe are given in the tables, as well as their ratios to their corresponding standard units. The English cental of 100 pounds is gradually gaining ground on the hundredweight of II2 pounds in external commerce, and may possibly altogether replace it for such purposes ; in the meantime it would be perhaps premature to imagine it has done so, and to give all tabular values in centals instead of in hundredweight.

Perhaps the most convenient mode of arranging the upper English weight-units would be to abolish both the hundredweight and the cental, and use the foot-weight or talent of 62.32 Ilbs . as the standard unit, with a unit of 40 foot-weight as a ton ; thus preserving correspondence with cubic measure and the tun of capacity.

The Levantine and Syrian cantaro is either 44 okas or 100 rottal, according as the oka or the rottal is con-
sidered the standard unit ; in some cases both ratios are preserved. The Cairene canthar of 36 okas and of 100 local rottal is an exceptional case, probably due to the incorporation of older local measures with the Arab system.

In Northern India, the large mun, or maund, not to be confounded with the small Arab and Persian mun, is a multiple of the proper ser, being almost invariably 40 ser, or about 90 English pounds. In Central India, the Malwah mun are rather small, from 16 to 28 ser and upward; but in this province the māni of 12 mun, varying from 3 to 5 English hundredweight, are the peculiar units; in one or two cases they are merely 4 mun.

In Southern India the mun is comparatively small in value, for it generally consists of 40 nominal or kuchcha sers, which, as before explained, are usually small ; the Gujrat mun is small, but here the mauni of 12 mun, or 480 local ser, varying from $4 \frac{1}{2}$ to 6 English hundredweight, is also a peculiar local unit. The Malabar, Ganjam, and Travancore mun are small; the more notable of the exceptional South Indian mun are the Bangalore mun of 24 rottal, the Travancore mun of 25 rottal, the Goa mun of 24 rottal, the Tranquebar mun of 68 Danish pounds, and the maunds of Allepay, Quiloa, and Trevandrum of 25 and of 30 olundas or Dutch pounds.

In Southern India besides the maund there is also the kandi or candy, a unit much more frequently employed in all transactions than the maund, in the same way as the viss is more usually adopted than the seer. The kandi is 20 small man, and varies from 500 to 560 English pounds ; it is hence the large commercial unit in common use, corresponding to the bahar of China,

Malacca, and the Malayan Archipelago, and it occasionally takes the latter name.

The bahar of modern Arabia varies much in value; the bahar of China and Malacca is 3 piculs or 300 tching or catti.

Tons and lasts.-The very large or nominal measures of weight corresponding to the English ton are units adopted only by nations having extensive commercial transactions; the number of various tons used in the world is hence comparatively small, as may be seen from the list of them given with their values in the tables at the end of this chapter.

Lasts of freight vary much with the nature of merchandise ; although those used for heavy goods are welldefined and invariable.

Units far beyond the ton in value are few in number. The South American cajon for minerals, a case or chest of 50 quintals, or about two English tons (see the tables) is one of these ; the Russian perma of four Russian tons or eight packen, used for hay and similar goods, is another ; but the whole series of Malwah maniasa of 100 mauni exceed them ; the highest being that of Bhopal ; their values range from 15 to 25 English tons, and they indicate a high degree of commercial development in the land of opium.

COMMERCIAL POUNDS AND ANALOGOUS UNITS.

GENERAL VALUES.

England and America : the avoirdupois pound $=16$ ounces $=7000$ grains troy $=128$ medicinal drams $=256$ commercial drams . .
An English pound $=16$ millesimal ounces, each $\frac{1}{1000}$ th of the English foot-weight of water on the scientific series $=16000$ mils $=16000000$ doits.
Denmark : the Danish pound $=\frac{1}{62}$ nd part of a foot-weight of water at ordinary temperature $=2$ marcs $=16$ ounces $=32 \operatorname{lod}=128$ quintin $=512$ ort .
Norway : the Danish pound, but valued thus according to Warden's Report for 1874-75.
Sweden : the skalpund $=16$ ounces $=32 \operatorname{lod}=$ 128 qwintin $=8848$ ass ; (detached unit)
Prussia : the Prussian pound $=\frac{1}{66}$ th part of a foot-weight of water in vacuo at 15° Réau$\operatorname{mur}=2$ marcs $=16$ ounces $=32$ loth $=128$ quentchen $=512$ pfennige; the half pfennig being also termed a heller .
Austro-Hungarian Imperial pound $=4$ vierling $=16$ ounces $=32$ loth $=128$ quentchen $=512$ pfennige ; (detached unit) .
German Zoll-pound (metric) $=\frac{1}{2}$ kilogramme de la Conservatoire .
Russian Imperial pound (funt) $=12$ lana $=16$ ounces $=96$ sol $=9216$ doli; (detached unit)
France, Italy, and the Netherlands, \&c. : the kilogramme $=1$ cubic decimetre of water at 0.4° Centigrade $=1000$ grammes
Spain: the Castilian pound $=2$ marcos $=16$ onzas $=128$ ochavas $=256$ adarmes $=768$ tomines $=9216$ granos ; (detached unit) .

I	16.019	0.45359
- 09988	16	0.45304
1•Ioro	17.637	0.49940
I ${ }^{\circ} 0981$	17.691	0.49810
0.9337	14•958	0.42354
1.0311	16.518	0.46771
I 2347	19.779	$0 \cdot 56006$
I•1023	17.658	$0 \cdot 5$
0.9028	14*463	$0 \cdot 40952$
$2 \cdot 2046$	35:317	I
I 0141	$16 \cdot 246$	$0 \cdot 46000$

COMMERCIAL POUNDS, \&C. -continued.

d.	엌ㅋ Lbs. av.	$\begin{aligned} & \text { an orin } \\ & \text { Ounces } \end{aligned}$	Kilog.
Portugal : arratel or arrate $=2$ marcos $=4$ quartas $=16$ onzas $=128$ outavas $=384$ scrupulos $=9216$ graos ; (detached unit)	I-OII9	16,210	0.45900
Ottoman Empire: the Stambul oka $=4$ cheki $=400$ dirhem $=6400$ kirat or taim $=25600$ taim ; (detached unit)	283	45.308	I 28290
Also the Stambul rotal or lodar $=176$ dirhem	44	19.935	
Greece : the oka $=400$ drachmata	3.3711	54.003	10
Syria : the Damascus rotal $=60$ wakia $=400$ mitkal $=600$ dirhem .	3.95	63347	I 79370
Arabia : mekka rotal	I 0206	16.349	0.46294
Egypt : Cairo oka or harsela $=400$ darham	$2 \cdot 7769$	$43 \cdot 704$	I 25960
Abyssinia : rotal or litre $=10$ mocha $=\mathbf{1} 20$ darham= 12 wakia		$10 \cdot 985$	0.31104
Tunis : rotal $=16$ wakia $=128$ mitkal	1104	17.7	- 0.50366
Algiers : rotal-attari $=16$ wakia	I 2039	19.286	- 5.54608
Morocco : rotal	I-123	17.819	0.50454
Persia : the saddarham $=6 \frac{2}{3}$ giya $=8$ danar $=16$ pinar $=20$ seritahrán $=100 \quad$ darham $=320$ miskal	3	52,076	1 47456
Persia : rotal = 100 miskal	I -159	16.274	0.46080
Northern India: the Imperial ser or seer $=16$ chattak $=80$ tola or rupis $=14400$ grains troy	2.0571	32:954	o'93311
Also the French kilogramme.	$2 \cdot 2046$	$35 \cdot 317$	I
Southern India: the Madras vis $=50$ ounces avoirdupois	$3 \cdot 1250$	50'060	144748
Also the Bombay ser $=30$ paise $=4900$ grains troy .	$0 \cdot 7$	$11 \cdot 214$	0.31752
Burma: the Rangun vis $=100$ tical	3.3333	53.398	1'51198
Thai (Siam) chang $=80 \mathrm{bat}=20$ tael	$2 \cdot 675$	42.852	I 21336
Malacca tampang, or Dutch catti $=\frac{1}{4}$ lbs. Dutch troy	1.3564	21.729	0.61525
Sumatra : the English catti	333	21.359	0.60479
Java, Celebes, and Borneo : the Dutch catti	1 33564	21.729	0.61525
Mindanao and Sulu Islands : the English catti	1•3333	21/359	0.60479
Manila : the Spanish catti $=22$ onzas españoles	r.3946	22:341	0.63258
China : the tching $=16$ liang .	1.3252	$21 \cdot 22{ }^{\prime} 9$	$0 \cdot 60110$
,, the export tching or catti $=16$ taels	- 3333	21.359	0.60479
Japan: Japanese king $=160$ nomme	$\cdot 3$	20.825	0.58967

Note.-These units are detached, when not expressed as cubicised.

COMMERCIAL POUNDS, \&c.
-continued.

FORMER, LOCAL, OR SPECIAL UNITS.

England:-

Former troy and apothecaries' pound $^{1}=\mathbf{1 2}$ oz.
troy $=5760$ grains troy $=96$ drachms $=288$ scruples
Old commercial pound used in foreign trade $=$ 16 ounces (7,200 grains troy) $=10240$ grains.
Old merchants' pound $=15$ ounces $=25$ shillings $=300$ pence (6750 grains troy) $=9680$ grains
Old moneyers' pound ${ }^{1}=12$ ounces $=20$ shillings $=240$ pence $=1 \frac{1}{2} \quad \operatorname{marc}=7680$ grains (5400 grains troy)

Denmark and Norway :-
Monetary pound, ${ }^{\text {, }}$ for subdivision see commer-
cial pound, also $=8192$ as $=63536$ grains

Sweden :-

Export pound and jernwigt pound $=\frac{4}{5}$ skålpund
Town pound, uppstadswigt $=7450_{1}^{2}$ ass
Miners' pound, bergwerkwigt $=782 I_{19}^{725}$ ass
Copper pound, rakopparwigt $=7853$ ass.
Copper pound, råkopparwigt $=7853$ ass.
Iron-ore pound, rajernwigt $=10168$ ass.

Germany :-

The Prussian pound was used in several additional places after 1816; Weimar, Silesia, Hesse, and Wiirtemberg. The subdivision of the following German pounds follows the Prussian type except when otherwise expressed. (See General Values.). $\dot{\text { he Cöln pound used in Saxony, Lippe-Det- }}$ mold, and at Hamburg for retail trade
Baden, after 181o, zoll-pfund $=10$ zehnling $=$ 100 centass $=1000$ pfennige $=10000$ as ; also divided into 32 loth $=128$ quentchen . .
Bavaria, from 1810 to 1872 , pound $=16$ unzen $=32$ loth $=\mathbf{I} 28$ quentchen
Bremen pound I 098
Brunswick pound I 0302
Coburg pound
Darmstadt, zoll-pfund $=32$ loth $=128$ quentchen $=512$ richtpfennige
Elsass, livre poids de marc (see France) .
0.8229
1.0286

$$
0.9643
$$

$$
0.7714
$$

I•0379

$0 \cdot 37324$
0.46657
0.43739
0.34992
0.47080
-. 33883

- 3566
- 3744
0.3759
0.4867

I 0311	16.518	0.46771
1.0307	16.511	0.46750
I•1023	17.658	0.5
I 23446	19.777	0. 56000
1.0985	17.596	0.49825
I 0302	16.503	0.46730
1•I239	17:994	0.50980
I•1023		
I 0792	17.288	$0 \cdot 489$

[^10]COMMERCIAL POUNDS, \&c.
-continued.
Germany-continued:-
Elsass, old pfund of Elsass for retail trade

Frankfurt-on-the-Main, wholesale pound

 Gotha pound ", retail pound.Hamburg, wholesale lb. is the Holstein ${ }^{\text {ib }}$. ,, retail pound is the Cöln pound
Hanover pound
Holstein pound 0794
Liibeck pound
Mecklenburg Schwerin, wholesale pound as at Hamburg .
Nassau", the Wiesbaden retail lb., aug. 5 perct.
Nassau, the Wiesbaden pound
Nuremberg, old commercial pound. .
Oldenburg, old monetary pound Hamburg pound subdivided
down to down to 8192 as

Switzerland:-
The three pounds most commonly used were-Zoll-pfund
Uri, Zug, Zurich, \dot{T}° Zurich heavypound $=18 \mathrm{oz}$
Schwytz \& Glaris $\}$ Antorf light pound $=16$ oz

Arau pound $=32$ loth
I. 0507

Basel, wholesale or heavy pound $=16$ ounces.
," retail pound $=16$ ounces $=32^{\circ}$ loth $=128$
, retail pound $=16$ ounces $=32$ loth $=128$
quentchen.
,, monetary pound (Prussian) $=16$ ounces
Berne and Neufchâtel, heavy pound $=16$ ounces
Freiberg, commercial pound $=32$ loth $=128$ quentchen.
monetary pound (French p. de marc)
St. Gall, heavy pound $=20$ ounces $=40^{\prime}$ loth light pound $=16$ ounces $=32^{\prime}$.
Geneva, heavy pound $=18 \mathrm{oz},=432$ pfennige .
G, light pound $=15$ ounces $=360$ pfennige
Grisons, meat pound $=48$ loth $\quad . \quad . \quad$.
\quad, \quad fish pound $=36$ loth.

$$
\text { ,, fish pound }=36 \text { loth . . . }
$$

," light pound $=32$ loth $. \quad . \quad . \quad$ r.147 I
Lucerne, pound $=36$ loth $=144$ quentchen .
Schaff hausen, heavy pound $=40$ loth . . ,, light pound $=32$ loth.
rgau, Appenzell heavy lb. $=20 \mathrm{oz} .=40$ loth
Thurgau, Appenzell heavy lb. $=20 \mathrm{oz} .=40$ loth
,$" \quad$ light $1 \mathrm{~b} .=16 \mathrm{oz} .=32$ loth.

I 0873
1.0719

I ${ }^{\circ} \mathrm{O} \mathrm{II}$
I• 1466
I 0792
I•1654
I 2733
1.0252
I.214I

I-OII7
I•5296
I 0196
I•IoIo
I 2677
I-0i4I
I 2888
I• 0252

16.832	0.4766
17.418	0.4932
17.171	0.4862
16.518	0.4677
18.368	0.5201
17.288	0.4895
18.668	0.5286
20.397	0.57755
16.422	0.4650
19.449	0.5507
16.207	0.4589
24.493	0.6938
18.375	0.5203
16.334	0.4625
17.637	0.4994
20.307	0.575
16.246	0.460
20.646	0.5846
16.422	0.465

COMMERCIAL POUNDS, \&c.

-continued.

SWITZERLAND-continued:-

Ticino, libbra grossa $=32$ ounces $=64$ loth

$$
" \text { libbra sottile }=12 \text { ounces }=24 \text { loth }
$$

aadt, since 1822 , pound $=\frac{1}{54}$ th part of a foot-
weight of water at 39° Fahr. $=16 \mathrm{oz} .=128$
gros $=512$ pfennige $=9216$ grains $\quad . \quad$.
Note.-The ounces of the light and heavy pounds are not necessarily identical at any one place or canton.

France:-
Livre métrique (I 8 I 2 to 1840) $=\frac{1}{2}$ kilogramme $=16$ onces $=128$ gros $=9216$ grains
Livre poids de marc $=\mathbf{2}$ marcs $=\mathbf{1 6}$ onces $=\mathbf{1 2 8}$ gros $=9216$ grains $\quad . \quad . \quad . \quad . \quad$. 24 deniers $=4800$ oboles $=5760$ grains .

Holland and Belgium :-
Amsterdam pond $=\mathbf{1 6}$ onsen $=32$ looden $=128$ drachms $=10280$ as
Troy-pond, subdivided in the same way, but also $=320$ engeln $=10240$ as
Brussels shop-pound $=4$ quarter $=16$ onsen $=$ 64 satin $=128$ gros $=9216$ grains.

Austro-Hungary :-

The Imperial and the Zoll-pound (General Values).
Bohemian old pound I I 342
Buda-Pesth, old pound I 0576
Galicia, old Lemberg pound 0.9262
Cracow pound $=2$ marc $=16$ ounces $=32$ loth $=$ 48 skoykiecs
Silesian old pound (subdivided as at Vienna) . $1 \cdot 1676$
Dalmatia, Ragusa pound $=\frac{2}{7}$ oka $=12$ ounces $=$ 120 drachms
Illyria, funto of Fiume I 2317
Tyrol, Tyrolese pound $=16$ ounces $=32$ loth.$~ I \cdot 2403$
", Trent commercial pound . .
"
,, Botzen light pound for grocery . . $0 \cdot 7290$

> RUSSIA:-
> Imperial, commercial, and monetary (General Values).

Old Lithuanian pound : $0.826 \mathbf{1}$
Narva pound $=96$ solotnik

I-942I
0.7283

I•1023

I 0893
I 10850
0.8949
0.8437

I•1023
1×0792
$0 \cdot 7093$
I.O3II

$18 \cdot 169$	0.51445
16.941	0.4797
14.836	0.4201
14.335	0.4059
18.704	0.5296
13.516	0.3827
19.731	0.5587
19.869	0.5626
11.866	0.336
17.693	0.501
11.678	0.33065
13.233	0.3747
16.528	0.468

COMMERCIAL POUNDS, \&c.

- continued.

RUSSIA-continued:-
Pernau pound $=\mathrm{I} 6 \mathrm{oz} .=32$ loth $=\mathrm{I} 28$ quenten Revel ,, ,, , ,,
 skoykiecs $=9216$ granikow of 8 milligrams . ,, ancient funt before 1819 . . .

Italy :-
Libra metrica $($ since 1803) $=10$ oncie $=100$ grossi $=1000$ denari $=10000$ grani
$2 \cdot 2046$
Ancona, lira commerciale $=\mathbf{1 2}$ oncie . .
Belluna, libbra peso grosso
$0 \cdot 7293$
", ,", sottile
Bergamo, lira $=30$ oncie $=720$ denari $=17280$ grani.
Bergamo, liretta $=\mathbf{1 2}$ oncie $=288$ denari $=6912$ grani.

I•1391
0.6640

Bologna, libbra $=12$ oncie $=96$ ottave $=192$ ferlini $=1920$ carati $=7680$ grani

I•7973

Brescia, libbra commerciale
Como, libbra
Cremona, libbra commerciale . . .
Ferrara " " \quad, $=12$ oncie . .
Genoa, peso grosso $=\mathbf{I} 2$ oncie . . .
,, libbra peso scarso $=\frac{2}{3}$ rottolo $=12$ oncie
$\left.\begin{array}{l}\text { Messina and } \\ \text { Palermo }\end{array}\right\} \begin{gathered}\text { rottolo ordinario }=30 \text { oncie } \\ \text { monetary libbra }=12 \text { oncie }= \\ 360 \text { trapesi } .\end{gathered}$
Milan, libbra peso grosso $=4$ quarti $=28$ oncie ,, ., ,, sottile $=12$ oncie $=6912$ grani
Modena, lira $=\mathbf{I} 2$ oncie $=\mathbf{I} 92$ ferlini . . 0.7500 Monetary pound was that of Bologna.
Naples, rottolo of commerce $=2 \frac{7}{9} \mathrm{lbs}=33 \frac{1}{3}$ oncie
Naples, monetary libbra $=12$ oncie $=360$ trapesi $=7200$ ácini
Padua and 7 libbra peso grosso $=12$ oncie .
Vicenza $\} \quad, \quad$ sottile $=12 \quad, \quad$.
Parma, libbra $=12$ oncie $=288$ denari $=6912$ grani
Piacenza, libbra $=12$ oncie $=288$ denari $=6912$ grani
Piedmont, Turin libbra $=1 \frac{1}{2}$ marc $=12$ ounces $=c 6$ ottavi $=6912$ grani $=165888$ granatini.

Lbs.av.	Ounces	Kilog.
0.9185	14.713	0.4166
0.9502	15.221	$0 \cdot 431$
0.9217	14764	0.41805
0.8940	14.321	
0.8352	13:379	- 3788
$2 \cdot 2046$	$35 \cdot 317$	1
$0 \cdot 7293$	11.683	$0 \cdot 3308$
I•1391	18.248	0.5167
$0 \cdot 6640$	10.637	0.3012
I 7973	28.792	0.81525
-0.7189	11.517	- 03261
0.7981	12.785	0.3620
0.7077	$11 \cdot 337$	0.3210
0.6839	$10 \cdot 955$	$0 \cdot 3102$
0.6812	$10 \cdot 913$	0.3090
0.7625	12.214	0.34585
0.7686	12.313	$0 \cdot 34865$
0.6989	$11 \cdot 195$	0.3170
$1 \cdot 7502$	28.037	0.79388
- 7072	11.328	0.32076
I 6811	269331	0.76255
0.7205	11.542	$0 \cdot 3268$
0.7500	12.015	0.3402
I 9643	$31 \cdot 467$	0.891
0.7072	113228	$0 \cdot 32076$
1.0726	17.182	0.4865
$0 \cdot 7472$	11-969	0.3389
-0.7196	11.527	0.3264
$0 \cdot 7011$	$11 \cdot 231$	0.3180
0.8131	13.027	$0 \cdot 36885$

COMMERCIAL POUNDS, \&c.

-continued.

Italy-continued :-

Reggio, libbra
Rome $"=12$ oncie $=2 \dot{8} 8$ denari $=6912$ grani
Rovigo, libbra peso grosso i..\quad.
Sardinia ", ", 12 onctie $. \quad . \quad . \quad$.
Sicily, Neapolitan pound $=12$ oncie ," old Sicilian pound $=12$ oncie $=5760$ "occi.
Tuscany, libbra $=12$ oncie $=96$ drachme $=6912$ grani
Tuscany, Livorno rottolo $=3$ libbre $=36$ oncie.
Venice, libbra peso grosso $=2$ marc $=72$ sazi $=2304$ carati
Venice, libbra peso sottile $=12$ oncie $=\dot{7} 2$ sazi $=1728$ carati
Verona, libbra peso grosso $=12$ oncie $=192$ mezetti
Verona, libbra peso sottile $=\mathbf{1 2}$ oncie $=192$ mezetti

Spain:-

Castile and Leon, libra castillana (general) .
Aragon, libra pensil $=1 \frac{1}{2}$ marcos $=12$ onzas $=$ 48 quartos $=192$ adarmes $=6144$ granos
Asturias, libra mayor $=3$ marcos $=24$ onzas cast. menor $=$ libra castillana.
Cataluña, Majorca and Minorca, libra $=1 \frac{1}{2}$ marcos $=12$ onzas $=48$ quartos $=192$ arienzos $=6912$ granos
Galicia, libra gruesa or gallega $=20$ onzas . ,, , sutil $=$ libra castillana $=16$ onzas.
Grenada, old libra mayor
Iviza, "libra
$\begin{aligned} & \text { Murcia } \\ & \text { Navara, } \\ & \text { onzas cast., liba }= \\ & \text { onvided in the Castilian manner }\end{aligned}$
San Lucar, libra
San Sebastian, libra $=\mathrm{r} \cdot 06$ libra castillana .
Tortosa (Spain) libra
Valencia, libra mayor $=18$ onzas $\dot{\text { menor }}=12$ onzas (Castilian sub. division) ", menor $=12$ onzas (Castilian sub-
Valencia, libra for saffron and chocolate $=1 \dot{6}$ onzas
Valencia for bread and meat $=36$ onzas . .
Canary Islands, libra castillana.

COMMERCIAL POUNDS, \&c.

-continued.
South America, Manila, \&c. :-
 The Castilian pound. (See General Values.)

Brazil, Madeira, Goa, \&c. :The Portuguese arratel. (See General Values.)

Ionian Islands, Greece, \&c.:-

The pound avoirdupois I
The Venetian libra peso grosso . . . 1.0517
marc $=\frac{2}{3}$ libra 0.71
Patras, pound $=\frac{1}{3}$ oka $=12 \mathrm{oz} .=133 \frac{1}{3}$ drachma. 0.88 IO
,, silk pound $=15$ ounces . . . I•1013
Morea, pound $=\frac{3}{8}$ oka $=$ Venetian libra p. g. . $\quad 10517$
Malta, monetary lira $=\frac{2}{5}$ rottolo $=12$ oncie . 0.6980
India and the Antilles:-
Cannanor, pound $=4$ pollam $=40$. Surat rupis . 10027
Cochin ,, $=42 \frac{1}{2}$ Surat rupis . . . $\mathrm{I} \circ 0867$
Ceylon, pound avoirdupois I
Ceylon, formerly the Dutch troy pound . . I 0850
Antilles (French) livre poids de marc . . ro792
Curaçao, old pound. $1 \cdot 1713$
Saint Croix, the Danish pound . . . i•Ioro

The Rotal, Lodar, and Cheki.
For the Italian rottoli see the Italian pounds (p. 216). The Portuguese rotal is given among the General Values.

COMMERCIAL POUNDS, \&c.
-continued.

Syria-continued :-
Acra, rotal for spun cotton
Aleppo and Alexandretta, rotal $=1 \frac{4}{5}$ oka $=12$ ounces $=\mathbf{7 2 0}$ darham .
Aleppo, rotal for Syrian silk $=700$ darham
.
,,,\quad Persian $,,=680 \quad, \quad \cdot 4.8877$

Smyrna, rotal or lodar $=180$ darham $\cdot 3.9544$

Tripoli, small rotal $=1 \frac{1}{2}$ oka $=600$ darham large $=\mathbf{I}^{4}, n=720 \quad \cdot 4{ }^{4} 0053$
Saí" large $, \prime=15, \prime=720 \quad, \quad \cdot 4.8063$
Said (Sidon), the rotal for ordinary trade

- $5 \cdot 2537$
the silk rotal $=600$ darham
Arabia :-
Mekka and Medina, rotal
Mokha, rotal $=15$ vakia I•5
,, coffee rotal $=14 \frac{1}{2}$ vakia . . . $\mathbf{1} 45$
Betelfaghi, rotal $=15$ vakia roi94
, \quad coffee rotal $=14 \frac{1}{2}$ vakia . . . 0.9854
rotal for dates, iron, \&c. $=16$ vakia
I 00874
Jidda, rotal $=15$ vakia .

Egypt and Abyssinia :-

Tunis, rotal $=\mathbf{1 6}$ vakia $=\mathbf{1 2 8}$ mitkal . $1 \cdot 1104$
Tripoli ,, $=16,,=\mathbf{1} 60$ darham $=2560$

$$
\text { kharuba } 10970
$$

Fez, rotal I.0370

$$
\text { Tangiers, rotal } 10608
$$

$$
\text { Tetuan ," } 15635
$$

$$
\text { Morocco, small rotal } \quad . \quad . \quad . \quad 123
$$

$$
\begin{array}{r}
\text { Mogador, rotal }=20 \text { piast } \\
\text { AlGIERS :- }
\end{array}
$$

Rotal feudi (monetary) $=16$ vakia . . 1 0066

$$
" \text { attari (ordinary) }=16,, \quad . \quad .2039
$$

$$
\begin{array}{lll}
\prime \prime, ~ k e b i r ~
\end{array}=1 \frac{1}{2} \text { rotal attari }=24 \text { vakia } \quad . \quad 1 \cdot 6450
$$

Or $\begin{array}{r}\text { English } \\ \text { Scientic } \\ \text { On } \\ \text { Squivalent. } \\ \text { Equ }\end{array}$

 7194280.523
78.286
76.049
$67 \cdot 103$
63.347
20.419

11:344
28.360

64'162
76.994

84'161
$65 \cdot 810$
16.349
24.029
23.228
$16 \cdot 330$
15.786
17.419

5•863
$15 \cdot 503$
$15 \cdot 217$
10985
$17 \cdot 788$
17.574
$16 \cdot 613$
16.993
25.047
17.819
$26 \cdot 728$
19.007
$17 \cdot 568$
19•286
28.929

17•793

COMMERCIAL POUNDS, \&c.

- continued.

Guinea:-
Benda $=8$ piso $=16$ agirac .
Persia and India:--
Persian rotal $=100$ miskal
Maisur rotal $=40$ rupis $=1 \frac{2}{3}$ Bangalur ser .
Travancor rotal or putur $=\frac{1}{20}$ tulam \quad.
,, another rotal $=\frac{1}{25}$ man . . . I OOIO
jandi. Colachi rotal $=5$ pollam $=1350$ man -
Eastern Asia :-
The Tching or Catti.
China, tching $=16$ liang $=160$ tchen $=1600$
fun $=16000 \mathrm{li}$
China, export tching, or Anglo-Chinese catti $=16$ tael $=160$ maces $=1600$ condorin $=$ 16000 cash: also for Japanese export
Used also at Singapur, Sumatra, Camboja, Moluccas, Mindanao, and Sulu Islands .
Dutch-Chinese catti $=I \frac{1}{4}$ pounds, Dutch troy, used in Sumatra, Borneo, Java, Celebes, and Malacca: also termed a tampang
Hispano-Chinese catti $=22$ onzas españoles, used at Manila, and in the Philippines .
Malacca, catti $=16$ tael $. \quad . \quad$.
Molucca catti $=1 \frac{1}{5}$ lbs. Dutch troy (Amboyna) .
Queda, catti .
Anam, kan =
Mocamoco, catti= 6
Acheen, catti $=20$ bunkal 24 . . 144583
Acheen, catti $=20$ bunkal $=100$ tael . . $2 \cdot 117 \mathrm{I}$
Malacca, monetary catti $=20$ bunkal . . 2.0491
Singapur $\quad, \quad=20 \quad, \quad . \quad .2 .3768$
Japan, king = 160 nomme I. 3000 ," the king is also estimated to be equal to the Anglo-Chinese catti .
Thai (Siam), chang or ching $=80$ bat . . 2.6750
Manila, the tola for gold $=$ Io piastres . . 0.5966
", ", silk = I I piastres, or ounces
0.6563

Lbs, av.		Kilog.
$0 \cdot 1414$	2'265	0.06412
I 0159	16.274	0.46080
I 0062	16.118	0.45640
- 09959	$15 \cdot 954$	0.45173
I 000	16.035	$0 \cdot 45403$
0.7521	12.048	0.34113
1.3252	21/229	0.6011
I•3333	21+359	0.6048
1-3564	21729	$0 \cdot 6153$
I'3946	22:341	0.6326
1.3500	$21 \cdot 626$	0.6124
I-3022	20.860	0.5907
I.6211	$25 \cdot 969$	- 7353
I.3750	22.027	-0.6237
I.4583	$23 \cdot 361$	0.6615
2-1171	$33 \cdot 915$	-.9603
2.0491	32.825	$0 \cdot 9295$
$2 \cdot 3768$	38.075	$1 \cdot 0781$
I•3000	$20 \cdot 825$	$0 \cdot 5897$
2.6750	42.852	I. 2134
0.5966	$9 \cdot 558$	0.2706
0.6563	10.513	- 2977

ORIENTAL DOUBLE POUNDS.
The Oka, Okijah, and Large Wakia. Eastern Europe:-
Hungarian oka $=2 \frac{1}{4}$ pounds $=400$ dirham
Moldavian, or Galatz oka
. . . 2.8660
Dalmatian, or Ragusa oka $=3 \frac{1}{2}$ pounds $=42$
ounces $=420$ drachms
Ionian Islands, oka $=2.7 \mathrm{lbs} .=400$ drachms
Cyprus, oka $=400$ drachms
Turkey:-
Stambul, oka $=4$ cheki $=400$ dirham . . 2.8283
Candia, oka $=2 \frac{3}{11}$ rotal $=400$ drachms . . 2.649 I

Greece:-

Greek oka $=400$ drachms
Patras and Morea, oka $=3$ pounds $=36$ ounces
$=400$ drachms
Also the Stambul oka
Syria :-

Aleppo, oka $=400$ drachms $\quad . \quad . \quad . \quad 2.7925$
Smyrna,$\#=4$ cheki $=400$ drachms \quad.
Tripoli $\quad,=400$ drachms . . . 2.8325

Mesopotamia:-
Bagdad and Bussara, oka $=400$ drachms $\quad 2.7425$
Bassara, wakia $\quad . \quad 4.8328$
,, wakia-attari I•I665

Egypt and Barbary :-

Alexandrian oka $=400$ drams
2.7282

Cairo, oka or harsela $=2 \frac{7}{9}$ rotal $=400$ drams . $2 \cdot 7769$
Tripoli, oka $=2 \frac{1}{2}$ rotal $=400$ darham . . $2 \cdot 7425$

Persia:-

The Saddirham $=8$ danar $=100$ dirham . . 3.2508
Persian wakia $=90$ miskal $=4$ nimmih . . 0.9143

Ounces	Kilog.
44'499	I 2600
45'912	I 3000
45'912	I 3000
47.300	I 3393
43.252	1.2247
44:803	I 2688
$45 \cdot 308$	$1 \cdot 2829$
42:436	I-2016
54'003	I.5291
42,341	I•1989
$44 \cdot 734$	I 2667
$45 \cdot 375$	1-2848
$42 \cdot 775$	1.2112
$43 \cdot 934$	I 2440
77-418	2.1921
18.586	$0 \cdot 5291$
43.704	I 2375
$44 \cdot 485$	1.2596
43'934	I 2440
52.076	1-4746
$14 \cdot 646$	0.41472

The Ser, or Seer.
Indian Imperial ser $=16$ chattak $=80$ rupis weight $=14400$ troy grains
A double pound of 32 millesimal ounces of the English scientific series
The French kilogramme (used as a ser) . .

$\mathbf{2 . 0 5 7 1}$	32.954	0.9331
$\mathbf{1 . 9 9 7 6}$	32	0.906
$\mathbf{2 . 2 0 4 6}$	35.317	\mathbf{I}

ORIENTAL DOUBLE POUNDS -continued.

North Indian Units (or proper sers) : -
Allahabad and Lakhnau, ser $=96$ sicca .
Balasur (Orissa), ser $=16$ chattak
Bauleah and Serampur, ser $=16$ chattak $=60^{\circ}$ Bengal sicca
Banaras, ser of 105 rupi of Benares . . 2.6250
$\stackrel{\text { Bhopal (Malwa) ser ", }}{ }{ }^{96}$ rupi " . . .
Calcutta, bazar ser . . . 2.9286
,, factory ser $=80$ sicca $=16$ chattak
I.8667

Calpī and Etawah (Agra) ser = 16
," Khaus-ser for sugar and metal ". . $\}$
", Raipur-ser, retail ${ }^{2 \cdot 1211}$
", ", wholesale 2.53 I 3
Dakka, ser $=16$ chattak 2.0469
Hughli,$=16$.', $2 \cdot 1047$
Indor ,, $=82$ Ujjain rupi 2.0266
Malda, , $=100$ Bengal sicca . . .
Malwah, or Bunswara ser $=84$ Salimshahi rupi
Mirzapur, ser $=84$ Bengal sicca
Patna, many ser units, the principal one is ser
Patna, many ser units, the principal one is ser
$=80$ sicca

$$
=80 \text { sicca } \quad \therefore \quad \therefore \quad \therefore \quad . \quad 2.0566
$$

Pertabghur, ser $=80$ Salimshahi rupi . . I.9286
Ujjain, ser $=80$ rupis $=16$ chattak . . . I 977 I

South Indian Units (mostly kachcha sers) :--

Ahmadnagar, commercial ser $=80$ Ankosi $2 u p i$
r.9714
goldsmiths' ser $=24$ tola . . 0.6453
Bangalur, kachcha ser $=24$ Arcot rupi . . 0.6035
pakka ser $=84$, , . $2 \cdot 1132$
Ballari, commercial ser=21 Maisur rupi . 0.5288
Baroda, ser $=42$ Babashahi rupi . . . r 06620
Belgaum and Shahpīr, ser $=24$ Shahpīr rupi
0.5966

Bombay goldsmiths' ser $=24$ tolt $.0^{\circ}$
,, and Surat, commercial $\operatorname{ser}=30^{\circ}$ paise (", ice) and Surat, commercial ser $=30$ paise
Haidarabad, Dakkan, ser $=80$ rupi $. \quad . \quad$ 1.985ı
Madras, native ser $=80$ pagoda $=8$ pollam . 0.6028
Anglo-Madras ser $=10$ ounces avoirdupois . 0.6250
Puna, commercial ser $=72$ tola . . . 1.9714
Telicherri and Calicut, ser $=20$ Surat rupi . 0.5114
Trichinopalli, metal ser

- 0.5954
$" \quad$ retail,,$=243$ star pagodas $\quad 1 \cdot 9060$ ", wholesale ser=270starpagodas $2 \cdot 1178$

31.577	0.8941
10.337	0.2927
9.668	0.2738
33.852	0.9585
8.471	0.2399
17.009	0.4816
9.557	0.2706
9.831	0.2784
11.212	
0.3175	
31.800	0.9004
9.657	0.2734
10.012	0.2835
31.577	0.8941
8.192	0.2320
9.538	0.2701
30.533	0.8645
33.926	0.9606

0.9621

I 0773
I•1482
0.9285
0.9547

- 9193

I•1624
0.9185
0.9780
0.9329
0.8748

- 8968
0.8941
0.2927
0.2738
0.9585
0
0.2399
0.4816
0.2706
0.2784
0.3175
0.9004
0.2734
0.2835
0.894 I
0.2320
0.8645
0.9606

ORIENTAL TRIPLE-POUNDS.

The Vis, Panj-ser, or Passari.

The panj-ser of Northern India is a mere term for 5 proper sers. The passari of Central India is generally 5 sers, but at Bhilsa is 6 sers, at Bhopal $6 \frac{1}{2}$ sers, and at Omutwara is $3 \frac{1}{2}$ sers.

Southern India :-

Burma and Malacca:-

Rangun, vis $=100$ tical $=10000 \mathrm{mus}$. . 3.3333
Pegu ,, $=100,,=10000,,=4$ agito $=8$ abuco $=450$ pagodas 3.3929
Tocopa, vis =4 put = 12 pinga . . . 5.9500
Janselon, vis $=4$ put 6.0667
Sumatra \&c. :-

THE STONE AND THE LIESPFUND.

Ratios to the Commercial Pound for both General and Former Local Units.

THE STONE AND THE LIESPFUND-continued.

ORIENTAL STONES.

The Smaller Mun, Man, or Batman.
Ottoman Empire:-
Turkish and Syrian man $=6$ local oka.
Arabian man, generally $=2$,, rotal.
But the Jidda man $=5$ Jidda rotal.
Persia :-

India :-
The Dharri or Dhaddä.
The dharrī or dhaddha is an expression for wie quarter of an Indian man or mun ; the dassari is ten seers.

QUARTERS AND ANALOGOUS UNITS.

> England and America :-

The English quarter (weight-unit) is the quarter of the hundredweight. The American quarter (weight-unit) is the quarter of the cental.
England : the quarter 28
America : , 25
The half of the commercial talent or foot-wt. . $3 \mathbf{I} \cdot \mathbf{r} \mathbf{I}$
The half of the talent or foot-weight of the Scientific series.

The arroba.
Spain :-
The Spanish arroba (weight-unit) is the quarter of the quintal.
Castilian arroba $=25$ libras castillañas . . 25.353
Alicante ,, ordinaria $=36$ libras menores 28.254
$\begin{array}{cl}\text { " } \\ \text { Aragon } & \text { granesa }=30 \\ =36 \text { libras menores } " . & 23.545 \\ \end{array}$
Cataluña ", $=26$,, 22.928
Galicia ,, $=25$,, gallegas . . $31 \cdot 758$
Valencia ,, ordinaria $=36$ libras mencres 28.254
$\begin{array}{lllll},, & , & \text { delgada }=30 & , & 23.545 \\ \text { (for flour) }=32 & , " & 25 \cdot 115\end{array}$
Canaries ,, $=25$ libras castillanas . . 25.353
$\left.\begin{array}{l}\text { Majorca } \\ \text { Minorca }\end{array}\right\},,=26 \quad, \quad$. . . 22.928
Gibraltar ,, $=25$, 25.435
Buenos Ayres, Chili, Mexico, Peru, Uruguay, La Havana, Manila, the Castilian arroba . 25.353

Portugal :-
The Portuguese arroba (weight-unit) is the quarter of the quintal.
Lisbon, arroba $=32$ arrateis $32 \cdot 38 \mathrm{I}$
Brazil and Goa, the Lisbon arroba.

The kachcha man.

Southern and Central India :-
The kachcha $\operatorname{man}=40$ kachcha ser (see Sers)
in some cases 8 vis.
The exceptions were the following : -
Central India:-
Bhilsa, man $=48$ ser 0.8204
Indor, kachcha man $=20$ ser . . . 0.3619
Mandissor, man $=15$ ser 0.2970
Omatwara, man $=28$ ser 0.4880
Pertabghur, man $=20$, 0.3431
Rutlam, Malwah, and Banswara, man $=20$ ser 0.3616
Ujjen, $\operatorname{man}=16 \frac{7}{8} \mathrm{ser}$. 0.2979

Southern India:-

Baroda, ${ }^{1}$ man $=42 \mathrm{ser}$.	3983	$0 \cdot 7145$	
elgaum, man $=44$ ser	0.23	$0 \cdot 4205$	II 1906
allari, man $=48$ ser	$0 \cdot 22$	$0 \cdot 4066$	11.512
mbay, ${ }^{1} \mathrm{man}$, for arrack $=50 \mathrm{ser}$	0.6850	$1 \cdot 2289$	34.797
alicut, $\mathrm{man}=34$ pounds $=60 \mathrm{ser}$	0.621	0.5571	15.775
Cannanor, man $=30$ pounds $=60 \mathrm{ser}$	0.2740	$0 \cdot 4916$	13.919
arwar, $\mathrm{man}=42$ ser	$0 \cdot 2301$	$0 \cdot 4059$	11.692
ochin, man $=30$ pounds	0291	$0 \cdot 4352$	123
olachi, $\mathrm{man}=30 \mathrm{rotal}$	$0 \cdot 201$	$0 \cdot 3615$	10
Darwar, man, for liquids $=48 \mathrm{ser}$.	220	$0 \cdot 3955$	II•198
oa, man $=24$ rotal $=24 \frac{3}{4}$ pounds avoir.	0221	$0 \cdot 3965$	11
amkhair, ${ }^{1}$ man (dry) $=64$ ser	$1 \cdot 318$	2.3651	66
Pallamkatta, man $=2$ tulam $=200 \mathrm{pu}$	0.223	$0 \cdot 4005$	II 340
una, ${ }^{1}$ besides a man of 40 ser , there are five.			
Surat, ${ }^{1}$ besides a man of 40 ser there are several.			
Telichery, $\mathrm{man}=32$ pounds $=64 \mathrm{ser}$	$0 \cdot 2922$	0.5244	14.847
Tranquebar, man =68 Danish pounds	0.6685	1-1991	33.963
Travankor, $\operatorname{man}=25$ olundas for metals and sugar	0.2443	0.4383	
Travankor, also a man $=30$ olundas (general)	0.293 I	0.5259	14.891
man $=25$ putur or rotal	0.2235	0.4009	II•352
Trichinopalli, $\operatorname{man}=8 \frac{1}{3}$ vis $=25$ pounds av.	0.2232	$0 \cdot 4$	II 340

In several places a special man for cotton of 42 ser (local) was commonly used; and occasionally also a man of 40 ser (${ }^{1}$) in addition to the man given in the table.

THE FOOT-WEIGHT OR TALENT (fzet.).

England:-
The commercial foot-weight, or talent, being the weight of an English cubic foot of distilled water at 62° Fahr. in air, by standard constructed and legalised in $\mathbf{I} 859$ for Great Britain
The scientific foot-weight at 32° Fahr. (the) water at 39° Fahr. in vacuo; in correspondence with the French standard method) $=\mathbf{1 0 0 0}$ millesimal or English ounces $=\mathbf{I}$ million mils $=\mathbf{I}$ billion doits, on the English scientific system, $=$ 28-3I5 3II 93I kilogrammes

France:-

The kilogramme, theoretically the weight? of a cubic décimètre at 0° Cent. of water in vacuo at 4° Cent. $=2.20462125$ pounds, av. ; since $1864=35 \cdot 316580740$ millesimal ounces English. Its old value was 2.20485714 lbs. av.

VARIOUS NOMINAL ENGLISH UNITS.

HUNDREDWEIGHTS AND ANALOGOUS UNITS.

GENERAL VALUES.

The English hundredweight. =II2 pounds I
$\left.\begin{array}{l}\text { The , cental . . } \\ \text { The American hundredweight }\end{array}\right\}=100 \quad, \quad 0.8929$
The Zollverein metric centner $=\mathbf{1 0 0} \quad,, 0.9842$
The Prussian centner . . = IIO ,, I.OI 27
The Danish and Norwegian
centner $=100$,, 0.9830
The Swedish centner . . = $\mathbf{1 2 0},, \quad \mathrm{I} \cdot 0004$
The Austrian ,, . . = 100 ,, I 0756
For Russian centners see Local Values,
p. 230. See also imperial berkowitz,
under Loads, p. 234.
The French metric quintal . $=100$ kilog.
$\left.\begin{array}{rl}\text { The Italian centinajo }=10 \\ \text { rubbi . } & =100 \quad, \\ \text { The Nederlandsche centenaar } & =100 \quad,\end{array}\right\}$ I.968
The Nederlandsche centenaar
Switzerland: the Waadt quin-
tal $=100$ pounds 0.9842
Spain : the Castilian quintal $=100 \quad,, 0.905$
Portugal : the Lisbon ,, . $=128$,, $1 \cdot 156$
Ottoman Empire : the Stam-
bul cantar . . . = IOO rotl I'III2
Egypt : the Cairo cantar $\quad=100,0.0 .848 \mathrm{I}$
Algiers: kantar attari $\quad=100,, \quad \mathrm{I} \circ 0749$
Persia : the mani hasham $=16$ man i bushahr
India: the man or maund.$=40$ ser
I•1146
India : the man or maund - 0 -7347
China : the picul . . $=100$ tching $1 \cdot 1832$
$\begin{array}{lll}, \text { the export picul }=\text { I } 100 \text { English catti } & \text { I•1905 } \\ , " \text { the Dutch ,, }=\text { Ioo Dutch ,, } & \text { I•2093 }\end{array}$
Japan : the tan or picul $\quad=100$ king $\quad 1 \cdot 1607$

1.7942
$1 \cdot 6019$
$1 \cdot 7658$
1.8170

1 17637
1.7950

1-9779
0.4994
0.5082
0.5606

I
$3 \cdot 5317$

$1 \cdot 7658$	0.5000
$1 \cdot 6246$	0.4600
2.0749	0.5875
$1 \cdot 9935$	0.5645
$1 \cdot 5217$	0.4309
$1 \cdot 9286$	0.5461
$1 \cdot 9997$	0.5662
$1 \cdot 3182$	0.3732
$2 \cdot 1229$	0.6011
$2 \cdot 1359$	0.6048
$2 \cdot 1729$	0.6153
$2 \cdot 0825$	0.5897

LOCAL, FORMER, AND SPECIAL VALUES.

Germany :-

The Zollverein metric centner $=$ Ioo pounds
Altenburg centner . . = I IO ,, I OIO4
Baden , $=10$ sein. $=100 \quad, \quad 0.9842$
17658
1.8128

1•7658

- 5000
0.5133 0.50

HUNDREDWEIGHTS, \&c.
-continued.
Germany-continued :-

Bavarian centner $=5$ stein	$=100$	unds	
Rhenish-Bavaria, centner	$=100$	ilog.	I 9684
Bremen, centner	$=116$	ound	I•1377
Brunswick, centner	$=114$,'	$1{ }^{\circ} 0486$
Cassel	108	,	I 0294
Coburg	110	,',	I•1039
Cöln, old	$=106$	"	- 09754
Darmstadt	= 100	,	842
Frankfurt on Main, centner	10	",	-0.9947
Hamburg \& Holstein, centner	II	,	1.067
Hanover, centner	11	",	I 0794
Lippe-Detmold, centner	= 108	"	$\bigcirc \cdot 9936$
Liubeck, centner	11	',	.0684
Nuremberg, old centner	10	",	$1 \cdot 0039$
Oldenburg, centner	10	"	- 09535
Prussian ,, $=5$ stein.	= 110	",	1×127
Rostock	$=112$	"	I 0679
Saxony $\quad, \quad=5$ stein.	$=110$	",	I ${ }^{\circ} 123$
Wiesbaden	$=106$	",	0.9821
Wirtemberg ,",	$=100$	"	$0 \cdot 9206$
augmen. cen	= 104		-9

Switzerland :-

Waadt, centner	00	unds	0.9842
Arau, centner	0	,,	0.9381
Basel	$=100$,,	$\bigcirc \cdot 9708$
Berne	100	"	I 02338
Saint Gall, centner	$=100$ light	",	$\bigcirc 0.9153$
Geneva ,, (liq.)	= 104 heavy	:	1.1273
Grisons, heavy centner	$=100$	"	1.0242
,, light	$=100 \mathrm{light}$,"	$0 \cdot 9104$
olothurn centner	$=100$		1.020

France:-

The metric quintal . . = 100 kilog. 19684
Old quintal poids de marc:.$=100$ pounds 0.9635

		Quintals
1.1023	$1 \cdot 9777$	$0 \cdot$
$1 \cdot 9684$	3.5317	1
I 1377	$2 \cdot 0412$	- 377797
r 0486	1.8814	- 533272
I 0294	1/8470	$0 \cdot 52298$
I $\cdot 1039$	$1 \cdot 9794$	0.56078
0.9754	1.7501	$0 \cdot 49555$
$0 \cdot 9842$	1.7658	$0 \cdot 5000$
0.9947	$1 \cdot 7846$	- 50530
I 06679	1.9160	- 54253
I '0794	$1 \cdot 9366$	- 544835
- .9936	17828	- 50479
I 0684	1.9168	- 54275
-0039	$1 \cdot 8012$	0.51000
9535	1.7107	0.48440
I 0127	1.8170	0.51448
I 06679	$1 \cdot 9160$	- 54253
O123	1.8162	0.51425
$0 \cdot 9821$	1.7621	0.49894
$0 \cdot 9206$	1.6518	$0 \cdot 46771$
-. 9575	1 17179	0.48642
0.9842	$1 \cdot 7658$	0.5000
0.9381	$1 \cdot 6832$	0.47660
0.9708	177418	- 4932
I 0238	1.8368	- 5201
0.9153	$1 \cdot 6422$	-0.4650
I•1273	$2 \cdot 0227$	- 5.5727
I 0242	$1 \cdot 8375$	0.5203
0.9104	$1 \cdot 6334$	$0 \cdot 4625$
$1 \cdot 0202$	$1 \cdot 8305$	0.5183
I 9684	$3 \cdot 5317$	1
0.9635	1-7288	0.4895
I•9684	3.5317	1
0.9726	177451	0.49409
0.9206	$1 \cdot 7220$	0.4677
0.9842	177658	-
I 0756	$1 \cdot 9779$	0. 56006
1.2152	2-1803	0.617

HUNDREDWEIGHTS, \&c. - continued.

Austro-Hungarian Empire -continued:-Galician-Lemberg centner $=$
75 Vienna pounds . 75 Vienna pounds $\cdot \quad$.
Tyrol, Botzen heavy ,", light $\quad, \quad . \quad=100 \quad, \quad, \quad 0.9862$
Cracow, centner $=4$ stein $\quad=128 \quad,, \quad 1.0227$
,, also a centrier . = 100 ", 0.7990
Trieste, the Vienna centner 10756

RUSSIA :-

See berkowitz, among Loads, p. 234.

Italy:-
Metric-centinajo = 10 rubbi . = 100 kilog. \quad r 9684
$\begin{array}{ll}\text { Cagliari, cantarello } . \quad . \quad=104 \text { pounds } 0.8325 \\ \text { Genoa, cantaro grosso } . \quad . \quad 150 & I .0295\end{array}$
$., \quad, \quad$ sottile . . $=150 \quad, \quad, \quad 0.9360$
Modena, centinajo . . $=100$,, $0 \cdot 6697$
Nice,,$\quad=6$ rubbi $=150 \quad,, \quad 0.9200$
Naples, cantaro grosso $\quad=$ roo rottoli $\mathrm{I} \cdot 7539$

Sardinia, cantarello . . = roo $\quad,, \quad 0.8002$
Sicily, cantaro ordinario $\quad=250 \quad$ ", 1.5627

1836) " 0668
$\begin{array}{ccccc}\text { Venice, centinajo grosso } & =100 \quad, & 0.5931 \\ , " & \text { sottile } & =100 & , & 0.9270\end{array}$
Spain:-
The Castilian quintal $=4$ arrobas.
Aragon, quintal =4 arrobas . $=144 \quad,, \quad 09921$
Cataluña, quintal $=4 \quad, \quad .=104 \quad,, 0.8189$
Bilbao, quintal pequeño o ordinario. . . . $=100 \quad, \quad 0.963 \mathrm{I}$
Bllbao, quintál macho, foriron $=146$,, 14062
,", ", for fish. . = 1 по ", п. 0595
Cadiz \quad, \quad ordinario $=4$ arrobas. $\cdot \quad . \quad=100 \quad, \quad 0.9055$
Cadiz, quintal macho $=6$ arrobas.
$=150 \quad, \quad 1 \times 3583$

Fwt
$1 \cdot 4836$
$1 \cdot 7693$
1.1678
1.8349

1-4335
$1 \cdot 9779$
$1 \cdot 7656$
1.8265
1.8331
$1 \cdot 4321$
3.5317
$1 \cdot 4936$
1-8471
1'6793
$1 \cdot 2015$
$1 \cdot 6507$
$3 \cdot 1467$
1•6992
1-1976
1•4356
$2 \cdot 8037$
3.0841

1-1992
$1 \cdot 0641$
$1 \cdot 6848$

1.6246	0.4600
1.7800	0.5040
1.1779	0.4160
1.7280	0.4893
2.5230	0.71438
1.9009	0.53823
1.6246	0.4600
2.4369	0.6900

HUNDREDWEIGHTS, \&c. -continued.

Fwit.	Quintals
$2 \cdot 0350$	0.57620
$1 \cdot 8071$	0.51168
$1 \cdot 1779$	0.4160
$1 \cdot 1326$	0.4000
$2 \cdot 0749$	0.5875
$2 \cdot 7953$	0.79150
8.4007	$2 \cdot 37868$
$8 \cdot 7367$	2.47383
$1 \cdot 9031$	0.53887
$1 \cdot 6019$	0.45359
$1 \cdot 6848$	0.47705
2.3761	0.67280
1.8630	0.52752
$1 \cdot 9935$	$0 \cdot 5645$
1.9935	0.56450
$2 \cdot 0388$	0.57733
$1 \cdot 9935$	0.5645
$1 \cdot 8672$	0.52869
8.0522	$2 \cdot 2800$
2.8183	0.7980
$2 \cdot 2144$	0.6270
6.3347	土 • 7937
2.0424	0.5782
6.4163	I.8I68
7.6996	2.1801
1.8580 0.4485	0.52610 0.12698

HUNDREDWEIGHTS, \&C. -continued.

Egypt:-
Alexandria, kanthar $=36$ oka nearly $=100$ rotl $\quad \begin{aligned} & \text { Cwt. } \\ & 0.8634\end{aligned}$ Cairo, ordinary kanthar $=36$ oka $=$ Ioo rotl 0.8392 The canthars of Cairo are about 10 to 12 in number varying from 36 to 82 okas in value.

Tunis and Morocco:-

India:-

The Imperial man, mun, or maund $=40 \mathrm{Im}$ perial ser

Northern India:-

The old local man $=40$ local ser (see Ser).

East Asiatic:-

Anam, $\tan =10$ yen $=100 \mathrm{kan}$. . . $1 \cdot 2277$
Thaï (Siam), the hap or pikul $=50$ chang . I•1942
Malacca, pikul = 100 Malacca catti . . I 2054
English ,, = 100 English ,, . . I•1905
Sumatra, tampang $=60$,, ,, . . 0.7143
Dutch pikul=100 Dutch catti . . . I•21II
Molucca, pikul $=100$ Molucca catti . . $1 \cdot 1627$
Banda, soekel $=28$ Banda catti . . . $1 \cdot 5250$
Manilla, pikul = 100 Manilla catti . . I•2452
China, common pikul $=100$ tching . . I 1832
$\left.\begin{array}{ll}, & \text { export pikul } \\ , & \text { Anglo-Chinese }\end{array}\right\}=100$ English catti . \quad I•1905
Japanese tan or pikul = 100 king . . . $\mathrm{I} \cdot \mathrm{I} 607$

0.50366
0.49760
0.538 I 8
0.50454
0.62200
$0 \cdot 54608$
0.60069
0.61434
0.81912
0.90649

I•092 6
0.56623
$0 \cdot 37324$
0.62369
0.60668
0.61235
0.60479
0.36287
0.61525

- 5.59067

0. 77474
0.63258
0.601 Io
0.60479
0.58967

LOADS AND ANALOGOUS UNITS.

Load, karch, bürde, charge, carga, carica, schiffpfund, skippund, frachtpfund, pfundschwer, schwerpfund, berkowitz.

Europe:-
The load is a general expression for 3 local quintals, centner, or cwt. ; for values deduce from cwts., \&c., p. 226-22I. The following are mostly exceptional :-

England :-
The load (generally) $=3$ cwt. . . . 3
The pig of lead $=300$ pounds . . . 2.6914
The sack of wool $=3 \frac{1}{4}$ cwt. 3.25
The load of straw $=36$ trusses $=\mathbf{1 2 9 6}$ pounds . II 57514

$$
" \text { hay }=36 \quad, \quad=2160 \quad, \quad .19 \cdot 2857
$$

Norway and Denmark:-
Skippund $=20$ lispund $=320$ pounds . . $3 \cdot 1457$

Sweden:-

Skippund $=20$ lispund $=400$ skålpund . . 3.3348
There were also skippunds of 400 stapelstadswigt pund, 400 bergwerkwigt pund, and 400 landstadswigt pund.

Germany :-

German schiffpfunds.
Prussian schiffpfind $=20$ liespfund $=330$ pounds

Bremen	,	"	$=290$,	$2 \cdot 8442$
Brunswick	,"	,"	$=28$	",	2.5755
Hamburg	,	,"	$=280$	"	$2 \cdot 6689$
Hanover			$=280$,	2.6985
Liibeck			$=280$	',	2.6709
Nüremberg		",	$=300$	",	3.0117
Oldenburg	"	,	$=290$,"	$2 \cdot 7651$
Rostock			$=280$		$2 \cdot 6698$
Bremen, pfundschwer or frachtpfund $=300 \mathrm{lbs}$. Hamburg and Rostock, pfundschwer or frachtpfund $=320$ pounds					$2 \cdot 9423$
					3.0512
Hanover, pfundschwer or frachtpfund $=336$ pounds					3.2381
Luibeck, pfundschwer or frachtpfund $=320 \mathrm{lbs}$.					3.0512
Stettin, buirde of steel $=3$ centner $=336$ pounds					$3 \cdot 0987$
Vienna, karch $=400$ pounds of Vienna .					4.4097

	Quintals
$5 \cdot 3825$	1.5241
4.8058	I. 3608
5.8310	I.651
20.7611	5.8786
34'6018	9.7976
5.6439	I•598i
5'9832	I 6942
$5 \cdot 4509$	I•5434
$5 \cdot 1030$	I 4449
4.6210	I-3084
4'7901	I 3563
4'8415	I 3709
4.7920	I.3569
5'4034	I 5300
4.8072	I 4048
4.7901	1.3563
$5 \cdot 2789$	I 4948
5.4744	I 5501
$5 \cdot 8098$	I -645
5.4769	I 5508
5.5595	I $574{ }^{2}$
$7 \cdot 9118$	$2 \cdot 2402$

LOADS, \&c.-continued.

France:-

Old charge $=3$ quintals $=300 \mathrm{lbs}$. p. de m. .
Nice, old charge $=300$ pounds
Bruxelles, poose or charge of coal $=\mathbf{1} 44 \mathrm{lbs}$. .
A nvers old charge $=400$ pounds . . .

> Spain, \&c. :-

Alicante, carga $=2 \frac{1}{2}$ quintales $=240$ libras

Aragon, carga $=3$ quintales $=432$ libras $\quad . \quad 2.5180$
Malaga ,, $=2$ serones $=175$,, cast. .
Cataluña and Majorca, carga $=3$ quintales $=$ 312 libras.
Quayaquil, a . . . 2.4566
Valencia $\quad, \quad=3$ quintales $=432$ libras
menores
Italy:-
Venice, carica $=400$ pounds peso sottile
Russia :-
Imperial berkowitz $=10 \mathrm{pud}=400$ funt . . 3.2244
Pernau, schiffpfund $=20$ liespfund $=400$ pounds $3 \cdot 2804$
Revel
Riga
," $=20 \quad, \quad=400 \quad,, 3.3953$
Arabia :-
Betelfaghi, bahar $=40$ farzel. $=800$ rotl . $7 \cdot 2814$
Jiddah $,,=10,, \quad=500$ rattal.$~ I .6338$
", = 15 ,", $=300$,, .
Persia:-
Kharwar $=\mathbf{1 0 0}$ man i tabriz $5 \% 060$
Central India and Guzrat :-
The māni $=12$ local man (see Man) ; in four exceptional cases it is otherwise, but there is then a maniāsa also (see Maniāsa), p. 237.

Southern India:-

The kandi or bahar $=20$ local man (see Man).
The following are special values.
Anglo-Madras, kandi $=20$ kachcha $\operatorname{man}=$ 160 vis
Anglo-Bombay, kandi $=20^{\circ}$ kachcha $\dot{\operatorname{man}}=$ 800 ser

$4 \cdot 5177$
5.3399
2.8430

4•4075
$1 \cdot 2997$
5. 4211
$4 \cdot 2564$

5•7851
5.8855
6.0918
5.9056
13.0640
2.9313
7.2087
$10 \cdot 4153$

44643
5

8.9708

I•8708
I. 2792

I•5I20
0.8050

I 2480
0.3680

I•5350

I 2052
r.6381

I-6665
I. 7249
I. 6722
3.69912
0.83000
2.04117
2.94912
$2 \cdot 26796$

LOADS, \&C.-continued.

Ceylon and Burma:-

Anglo-Cingalese kandi $=500$ pounds avoir. Old Dutch kandi $=480$ pounds Troy Dutch . Burma, English kandi = 500 pounds avoir. Old Pegu kandi $=150$ local vis

East Asiatic:-

Malacca, bahar $=3$ Malacca pikul $=405 \mathrm{lbs} . \quad 3.6162$ English ,, $=3$ English ,, $=400$," 3.5715 Tocopa,$=80$ vis $=476,, 4.25$ Queda,,$==15$ hali $=240$ ganta $=480,, 4.2857$ Jansalon,,$=80$ vis $=485 \frac{1}{3},, \quad 43333$
Sumatra ", $=560$ pounds avoir. $=560,, 5$
Acheen, , $=200$ Acheen catti . . 3.7805
Banda ", = 100 Banda ," $=6$ Io lbs. 54464 Batavia, amat $=2$ Dutch pikul . . . 24222
Java, bahar $=3$
Batavia, tampang = 5 Dutch pikul . . 6.0555
Molucca, bahar $=3$ Molucca
China, large export bahar $=4 \frac{1}{2}$ English ${ }^{\circ}$ pikul Anam quan $=5$ tan or pikul. \quad. \quad. .
3.6333

Cwt.	Fwt.	Quintals
$4 \cdot 4643$	$8 \cdot 0097$	$2 \cdot 26796$
$4 \cdot 6684$	$8 \cdot 3765$	2.37163
4.4643	$8 \cdot 0097$	$2 \cdot 26796$
4.5440	8.1528	2.30849
$3 \cdot 6162$	6.4878	1.83705
$3 \cdot 5715$	6.4077	I.81437
4.25	7.6252	2.15910
$4 \cdot 2857$	7.6893	2.17725
4.3333	7.7747	$2 \cdot 20144$
5	8.9708	2.54012
3.7805	6.7829	$1 \cdot 92060$
5.4464	9.7718	$2 \cdot 76692$
2.4222	43457	1.2305 1
3.6333	$6 \cdot 5186$	I.84576
$6 \cdot 0555$	$10 \cdot 8643$	3.07627
3.4880	6.2581	I 77201
5.3573	9.6116	2.72156
$3 \cdot 5715$	6.4077	1.81437
$6 \cdot 1384$	11:0133	$3 \cdot 1185$

TONS AND LASTS OF HEAVY GOODS.

GENERAL AND SPECIAL FORMER LOCAL UNITS.
England: ton $=20$ hundredweight
A ton of 40 foot-weight on the scientific series
A ton of 40 foot-weight on the scientific series $1 \cdot 114$
America: ton $=2000$ pounds $=20$ centals . 0.8929
Denmark:-
$\begin{aligned} \text { Danish last (heavy goods) } & =5200 \text { pounds } \quad 2.5559 \\ \text { Elsinor ,, } & =12 \text { skippund } \quad 1.8874\end{aligned}$
SwEDEN :-
Last of heavy goods $=5760$ pounds (skålpund)
Germany :-
Prussian ton $=2000$ pounds 0.9206
Hamburg, ton $=2000$ pounds . . . 0.9535
Frankfurt , $=2000$, $\quad . \quad .0 .9946$
Prussian last (heavy goods) $=4000$ pounds . 1.84 I 3
Bremen ", also a last $=12$ schiffpfund
of heavy goods $=4000$ pounds .
Frankfurt, last $=2$ tons $=4000$ pounds .
Frankfurt, last $=2$ tons $=4000$ pounds . . $1 \cdot 9892$
Hamburg, schiffslast $=2$ tons . . . I 9070
, ${ }^{\text {commerzlast }=2 \frac{1}{2} \text { tons . . . } 2.3837}$
Hanover, last $=3360$ pounds $=30$ centner . I.619I
Netherlands :-
Last of heavy goods $=2000$ kilog. . . . I 9684
Old Amsterdam last $=4000$ ponden . . $\mathrm{I} \cdot 945 \mathrm{I}$
France:-
Tonne, tonneau, or millier $=1000$ kilog. . 0.9842
Old French tonne $=2000$ lbs. poids de marc . 0.9635
RUSSIA :-
Ton $=60$ pud $=2400$ pounds . . . 0.9673
Last of heavy goods $=120$ pud $=2$ tons . . I 9346
Perma $=8$ packen $=4$ tons 3.8693
Spain:-
$\begin{aligned} \text { Spanısh tonelada } & =2000 \text { pounds } \\ \text { Alicante } & 0.9055\end{aligned}$
Alicante,$=\quad=1920$ pounds $=80$ arrobas. I 0009 I Mexican timber tonelada $=2240$ pounds cast. . I ${ }^{\circ} \mathrm{OI}_{4} \mathrm{I}$ S. American cajon (mineral) $=50$ quintales . 2.2637 Malaga, last $=6200$ pounds cast. net : . 2.8070 $"$ large last $=8800$ pounds cast. gross . 3.984 I

Fwt.	Milliers
35.883	I-OIGO
40	I"I326
32.039	$0 \cdot 9072$
91.713	2.5969
67.726	1.9177
86. 158	2.4396
33.036	0.9354
34.215	0.9688
35.691	I $\cdot 0106$
66.072	1.8708
$65 \cdot 411$	I-852I
$70 \cdot 386$	1.9930
71:382	2.0212
68.429	1×376
85.537	2.4220
58.098	I 6451
70.633	
69.804	I 9764
$35 \cdot 317$	I
34.575	- 0.9790
347711	0.9828
$69 \cdot 421$	I 9665
138.842	3.9314
32.491	0.9200
36.209	I 0253
36.390	I ${ }^{\circ} \mathrm{O} 04$
81-228	2.3000
$100 \cdot 723$	2.8520
142.961	4.0480

MISCELLANEOUS LASTS AND ANALOGOUS UNITS.

England:-
Wool-lasts = 39 cwt .
Last of flax, hemp, or feathers $=17 \mathrm{cwt}$
Last of gunpowder $=\mathbf{2 4 0 0}$ pounds

$$
\begin{aligned}
& \text { Fodder of lead, London and Hull = } 19 \frac{1}{2} \text { cwt. . }
\end{aligned}
$$

Norway and Denmark :-
Last of butter (net) $=2688$ pounds .
", ," according to Norwegian standard
Sweden :-
Last of hemp and flax, tallow, and malt $=6$
skippund $=2400$ skalpund

Russia :-

Last of hemp and flax, hair, isinglass, tobacco, and Russian thread $=60$ pud . . .
Last of candles, foreign thread, and of wax in barrels $=8 \mathrm{o}$ pud $=8$ berkowitz

1.3212
1.3158

47:409
47.215

I•3424
I•3369
I.OI65
0.9828
I. 3105

I•638I

I•9657

Fwt.	Milliers
69.972	I-9813
30.501	0.8636
38.447	I.0886
34.089	0.9652
38.575	I 00923
40.369	I•143I
47.409	I. 3424
47.215	I-3369
35'899	I 0165
34.711	- 98828
46.281	1.3105
57.851	I $\cdot 638 \mathrm{I}$
$69 \cdot 421$	I $\cdot 9657$
1000	$28 \cdot 315$

ROD-WEIGHT.

England : rod-weight of the decimal system $=1000$ footweight or talents $=1$ million ounces $=\mathrm{I}$ billion mils $=\mathrm{I}$ trillion doits $=\mathbf{2 5}$ tons of the same series
$27 \cdot 868$

MODERN METROLOGY

> PART II.-METRICAL SYSTEMS.

CHAPTER I.

SYSTEMS AND MODES OF SUBDIVISION.

While many of the primitive units of measure mentioned in the foregoing chapters were originally perhaps independent, and afterwards became either primary or secondary units, and were re-arranged both in value and in proportion to each other, yet some of them became nearly obsolete, and others came forward into common use ; several becoming less suitable to direct measurement from changes in commercial usage and in the commercial products principally dealt with, and some also becoming inconvenient in calculation from not being aliquot parts, or multiples or sub-multiples of other more useful primary measures.

The first result of such changes was the systematisation of a series of measures of length and distance, a series for surface, a series for capacity, and a series for weight. Sometimes also there remained two or three sets in each series; these sets being often independent of each other.

The next result was the formation of a complete
system of measures of length, surface, capacity, and weight, arranged with perfect interdependence, and sometimes also following one single method of subdivision throughout the whole.

The connection between the series of measures of length, surface, capacity, and weight, which alone justified the name of system, was made in various ways.

The relation between measures of length and of surface was apparently a most easy arrangement ; the multiple of some unit of length in common use was squared to form a unit of surface, and from this unit of surface a set of multiples and submultiples, or secondary units of surface were formed. This, the most simple and ordinary method, was, however, inconvenient from its incompleteness ; it was also necessary that the secondary units of surface should bear some convenient proportion to the secondary units of length, besides to that from which it was derived ; otherwise calculation became troublesome. We have at present an example of this defect in English measures ; the acre is 43560 square feet, or 4840 square yards, or 160 old square poles, which are perfect multiples; the acre is also $\frac{1}{640}$ of a square mile, a perfect sub-multiple ; but the representation of the acreside in feet, in yards, in poles, and in parts of a mile is by no means simple or rapidly calculated, for the reason that the acre was based on the square pole, irrespective of its relations with the foot, yard, and mile being convenient or otherwise.

The relation between measures of length and of capacity was a matter much neglected by many nations in ancient times, for the reason that measures of capacity were not much used at an early epoch, weight being the mode of estimating commercial produce, both liquid
and solid; hence generally the above-mentioned relation was adjusted only when perfect systematisation was deemed necessary.

The general relation, whenever made, was in accordance either with the cubit, with the foot, or with the half-foot, or some fraction of it, or some other linear unit ; thus-

Egyptian Grand Artaba was the cube of the Natural Cubit. Egyptian Royal Artaba , Royal Foot ($\frac{2}{3}$ Royal Cubit). Egyptian Foot (${ }_{3}^{3}$ Natural Cubit). Hindu Cubit. Hashemic cubit. Olympic Foot.
Egyptian Common Artaba "
The Ancient Hindu Chari
The Arab Den or Kor
"
Greek Metretes
Roman Congius
"

Danish, Swedish, Prussian, and French capacity-measures are based on cubic units.

The relation between measures of capacity and measures of weight was diversely made, according as it was thought advisable to conform the former to the latter, or the latter to the former.

In some cases the measures of weight were based on ancient and arbitrary standards, and the rectification of the measures of capacity was effected by adjusting them to certain weights of some common liquid or agricultural produce. Thus in China, the ching of capacity was adjusted to the ching (or pound) weight of unhusked rice ; in England the bushel was formerly adjusted to 56 lbs . of wheaten flour or of meal, and at one time to 60 lbs . of wheat ; and in recent times only to 80 lbs . of distilled water. The Roman amphora or
quadrantal was at one time adjusted to 80 Roman pounds' weight of wine.

The preferable method, however, adjusted the measures of weight to those of capacity, and thus rendered systematisation more simple ; for example-

One of the Egyptian Talents was the weight of a Common Artaba of Water (cubic foot).

The Great Attic Talent (Solon) was the weight of a Metretes of water (cubic foot).

The Arab Artaba weight was the weight of an Arab Artaba of water.

The Arab Yusdruman was the weight of $\frac{1}{2 \frac{1}{2} 0}$ of this.
The Lesser Greek Talent was the weight of an Amphora of water.

One of the Roman Amphoræ was the weight of a Roman cubic foot of water.

The Kilogramme is the weight of a litre of water (nominally).

When the whole of these relations became, or were, perfected, the result was a complete system of measures of all sorts, suitable for calculation as well as for weighing and measuring, such as those of Ancient Egypt, Ancient China, probably those of Assyria, those of Ancient Greece, and probably at one period those of Ancient Rome.

In modern ages in Europe, we have not only debased units, but also disjointed systems to deal with; the debased units, being approximations to the original correct units, are almost invariably excellent for purposes of weighing and measuring, and for all the objects of detached trades and commercial matters they have met the requirements of ages, and want little more than rectifying ; the disjointed systems, however little they may
affect detached trades, are, on the contrary, a considerable difficulty to the calculator, to the scientific man, and to all trades and professions that habitually deal with more than one, or with several sets of measures.

The principle of facilitating calculation has been thoroughly carried out in the design of the metric system, in which the relations of the measures of length, surface, capacity, and weight have been carefully adjusted ; this advantage has, however, its counterpart in the comparative disadvantages it possesses as regards purposes of weighing and measuring in commercial affairs, and as regards the practical inconvenience of many of its units of measurement, and the fact that many others remain mere decimal names, instead of practically useful measures. The choice of the demitoise or mètre, as the basis of this system is one much to be lamented ; had a natural unit been used instead, and had a practical man developed the system, it might have been as good in weighing and measuring as it is convenient in calculation. At present the mètre fails as a geodetic unit, and many of its dependent units fail in commercial convenience.

Decimal subdivision.-The most primitive and ancient method of estimating and dividing measures is doubtless the decimal system. From information given in the appendices to the Ninth Annual Report of the Warden of the Standards, $1874-75$, it appears that the Ancient Egyptian standard-weight and copper coinage were based on this system, and the following was the scale :-

$$
\begin{aligned}
\text { I Ten or Men }=10 \text { Kat } & =1400 \text { grs. English. } \\
\text { I Kat } & =140 \text { grs. English. }
\end{aligned}
$$

The Ten or Men thus being about one-fifth of a
pound, deduced from the weight of a 5 -Kat weight found at Thebes, being 700 grains. A papyrus of the period of Rameses II. gives an account in Ten and Kat, and the inscriptions at Karnac both mention Ten and Kat, and state amounts of tributes in Ten up to 3000. It is also extremely probable, from the units of measure being few, and from the remarkable apparent similarity of habit that the Ancient Egyptians had to the Chinese, that a system of decimal subdivision of any unit was as common with the former nation as with the latter. The land-measure of Egypt was, according to Herodotus, an aroura $=10000$ sacred square cubits ; or 100 cubits square.

The ancient measures of China, which are said to date from the reign of Hoang Ti, or about 2600 years B.C., were generally decimal. Doursther thus gives the ancient measures of capacity to be :-

$$
\text { I kou }=10 \text { teu }=100 \text { chin }=1000 \text { ho }=10000 \text { yo, }
$$

and estimates I kou $=2 \frac{1}{5}$ English bushels.
There seemed also to have been some corresponding system of measures of weight, the lowest unit being the weight of a grain of millet; 100 millet grains $=1$ tchu, and ascending by a decimal scale up to the tān; but there is also an opinion that there was always a break in this system, and that the Chinese pound or tching was always = 16 liang, or ounces; although it is more probable that several systems existed. The Tān, according to Doursther, was $50 \frac{4}{5} \mathrm{lbs}$. English.

The decimal subdivision of any unit is so imbedded in the minds of the Chinese that any other but a decimal fraction requires special explanation; the terms of
decimal subdivision were probably in ancient times much as now, any unit being $=$
$10 \mathrm{fan}=100 \mathrm{li}=1000$ hao $=10000 \mathrm{ssa}=100000$ hoe, $\& \mathrm{c}$. ,
continued down to the trillionth part.
The advantages of rapidity of calculation accompanying any decimal system are very great, and the rigidity of the ancient decimal systems of Egypt and China has been scrupulously imitated by the French in their metric system. It can be applied to any unit equally well, provided that there is an indifference as to whether the dependent units of the system are convenient or inconvenient for commercial purposes in weighing and measuring. It must, however, be noticed that the convenience is solely due to accordance with numerical notation, as regards decimality.

Sexagesimal subdivision.-This method prevailed with the Chaldæans, Babylonians, Assyrians, and Phœnicians, also with the Egyptians, under certain dynasties in the period intervening between that of the early decimal system before mentioned, and that of the later Ptolemaic or Phileterian decimal system. Cycles of time were invariably reckoned as periods of 60 years; the Indians still date back in cycles from the Kali-Yog ; the Chinese also; this method was universal ; the century of 100 years is a comparatively modern arrangement.

The subdivision of both time and angular measurement into minutes and seconds is the remnant of it now surviving in Europe ; in India the subdivision of the day into 60 ghari (or periods equal to 24 minutes), the ghari into 60 pul, and the pul into 60 taz, each equal to 0.4 second of European measure, still indicates the perfect sexagesimal method of those ancient astro-
nomers ; latterly the English commuted the ghaṛi into a sub-multiple of the hour.

All the ancient talents of a certain epoch, whether monetary, commercial, or royal, or specially for gold, were in the same way divided into 60 pounds or manáh, and these manáh into sixtieths or shekel. The values of these are given in Chisholm, 'On the Science of Weighing and Measuring' (page 47). Among these it is most likely that the manáh was the original unit, based on 60 pieces of money, or small bars of gold or silver, the same mode being afterwards applied to the talent. A double system, in which one set of talents, manáh, and shekel were respectively equal to double those of the other, shows strong attachment to this subdivision. The larger measures of capacity, the cor or komer of Media, and the artaba of Egypt, were also divided into 60 hin, according to some accounts.

The sexagesimal system possessed the advantage of facility of subdivision into thirds, sixths, and twelfths, as well as into tenths, but appears to demand some digital notation specially adapted to it in order to render it practically convenient in every respect.

Duodecimal subdivision.-The system of subdivision into twelfths, ounces or inches (unciæ) was carried out by the Romans; their foot was divided into 12 unciæ; their jugerum, a small acre of 28800 square feet, equal to about $2987 \frac{1}{2}$ square yards English, was subdivided into I2 unciæ; their sextarius, a measure of capacity one sixth of the congius, was divided into 12 unciæ; and the libra, or pondo, or pound, was divided into 12 unciæ. Each of the four standard units was termed an as or entire original unit; its duodecimal fractions from $\frac{11}{12}$ down to the $\frac{1}{19}$ were denominated deunx, dextans,
dodrans, bes, septunx, semis, or sexunx, quincunx, triens, quadrans or teruncium, sextans, uncia. The term sescunx for an uncia and a half, corresponding to the anderthalb of the Germans and the derh of the Hindus, afforded a convenient single term for expressing the eighth part of the as in unciæ, and for the ounce and a half without using a fractional term ; for this there also appears to have been at one time a single digital symbol also.

The multiples of the as, the tressis, quadrussis, quincussis, sexcussis, septussis, octussis, nonussis, decussis, or io as, were, on the contrary, on a decimal scale, in accordance with their notation, which was decimal in intention, although not dependent on place or position of the numerals. All European nations that took their foot measures through the Romans followed the duodecimal subdivision; while in the subdivision of the pound, the Italians, the French, and the English alone adopted it partially for commercial purposes, although it was retained by almost all European nations for the division of the medicinal pound.

Excellent as the duodecimal system may be for purposes of subdivision of a single unit, it appears to fail when applied beyond that limit without the aid of some special corresponding notation or arrangements of digits.

Binary subdivision.--The reciprocals of numbers that admit of perpetual halving down to unity, such as, 2,4 , $8,16,32$, and 64 , form excellent sub-multiples of measures to serve as secondary units of a lower degree ; some of them also afford exact square roots and cubic roots in integers, and thus give simplicity of relation between the units of surface and of capacity, and the original measures of length. Besides these conditions, which
may be termed partly theoretical, and principally affect calculation, there is the higher advantage that measures subdivided on a binary scale possess considerable convenience in actual weighing and measuring (which is the main object of commercial measures), as a half of any weight or measure throughout the series can always be conveniently arrived at, an advantage conceded neither by decimal subdivision, nor strictly even by duodecimal subdivision, but only arrived at by the device of treating the term $\mathrm{I} \frac{1}{2}$, an improper fraction, as a special digit.

For instance, the halves of $3,5,7$, and 9 on a decimal scale run into inconvenient fractions; the square roots of 10,1000 , and 100000 are inconvenient, so also the cube roots of 100,10000 , and 1000000 ; while the numbers on the decimal scale that do not give surds are very few and very far apart. A binary subdivision hence is a more civilised arrangement for commercial measures, and seems to have been adopted both by the commercial and by the more intellectual nations ; the Romans for commercial purposes, the Hindus, the Germanic, and Teutonic races ; while decimalisation was favoured by primitive nations only for commercial purposes, though even now well adapted to the scientific purposes and calculations of advanced races.

The Hindus were perhaps among the earliest of nations to adopt binary subdivision; their system of expressing fractions is clear of decimal terms, being real fractional terms, and not mere reciprocals in form of language. Thus their natural subdivision is-

The $\bar{a} d h a=\frac{1}{2}$; the pāo $=\frac{1}{4}$; the adhpāo $=\frac{1}{8}$; the chittak and the anna $=\frac{1}{10}$; the adh-chittak $=\frac{1}{32}$; the pāwīn, or subsidiary quarter $=\frac{1}{64}$.

Originally this method applied to everything, though latterly it was retained only with reference to certain special units ; thus the term chittak is now used for the $\frac{1}{16}$ of the ser (or common unit of weight); but it was also applied to the $\frac{1}{16}$ of the kottah (a unit of surface $=80$ square yards) as well as other units. The anna, now mostly confined as a term to the $\frac{1}{16}$ of a tola, or rupīweight for monetary weight, was also a term used in some parts of the country for the $\frac{1}{16}$ of a ser, thus corresponding to the chittak ; the anna-or, more properly, āna-was also the $\frac{1}{16}$ of a large measure of capacity, the rāsh, principally used for salt on the Bombay coast, and equal to 1160 English bushels, or $14 \frac{1}{2}$ loads. The gaz or yard was subdivided thus: I $\mathrm{gaz}=2$ hāth $=16$ girah $=64$ pāwīn; although there was also a subdivision of the girah into 3 ungli (fingers) or 9 jau (barleycorns); but it is remarkable that not only does this correspond to I yard $=2$ cubits $=16$ nails of English and Dutch subdivision, but the values are also identical with English units, if we reject exceptional local gaz.

The more ancient Hindu division of the day into 8 pahar or watches was distinct from the Chaldæan system of sixtieths borrowed at a later date.

The old Hindu measure of capacity, the chari, or cubic cubit, was divided in a corresponding manner :-

$$
\begin{aligned}
& \text { I chari }=16 \text { drona }=64 \text { adhaca, } \\
& \text { I adhaca }=4 \text { prastha }=16 \text { kadaba, }
\end{aligned}
$$

but it seems doubtful whether measures of capacity were ever much used by them at any time. At present, measures of weight take their place entirely and almost exclusively in commerce.

The Arabs, although renowned for the decimal notation adopted by all civilised nations, also used binary subdivision.

The artaba measure was $=\frac{1}{4}$ den or kor, and $=2$ $\mathrm{kafiz}=4 \mathrm{khul}=8$ woeba $=16$ makuk.

The Arab batman of weight was thus divided; I great batman $=4$ small batman $=8$ oka $=16$ rotl $=32$ cheki.

The commercial European pounds are almost invariably divided into sixteenths (called ounces); not only so, but the Teutonic marks, or marcs, or halfpounds, are also invariably divided into sixteenths (called loths ${ }^{1}$ or lodes) or half-ounces. The origin of these commercial pounds seems obscure, and the existence of the marc as an independent original unit appears also doubtful. Whether these pounds were based on the ancient Phœnician commercial pound, or whether the greater Attic mina, which corresponded to 16 Roman ounces derived by twelfths from the lesser mina, was the real origin, or both combined, is an interesting subject of antiquarian research; but the fact remains that the Teutonic races divide weight-units into sixteenths, although the standards have varied.

The same races divide their measures of capacity in the same way ; not only in England does the quarter= 8 bushels, and I bushel $=4$ pecks $=8$ gallons $=16$ pottles $=32$ quarts $=64$ pints, but the malter, scheffel, and boisseaux of Europe mostly follow the same invariable principle of subdivision.

[^11]Such a mode, thoroughly well-suited to commercial purposes, cannot be lightly rejected.

Septimal Subdivision.-This method is generally subsidiary or secondary. Even the week of seven days, undoubtedly ancient, was probably the quarter of some approximate month. The English stone of 14 pounds, the eighth of a hundredweight of II2 lbs., appears to have been adopted to suit the weight of certain measures of flour-a bushel of flour weighing 56 lbs ., and a peck of flour weighing 14 lbs .-also to suit certain, now antiquated, peck-loaf arrangements. The firkin of butter weighing 56 lbs., the Winchester bushel of Chester salt weighing 56 lbs ., and the sack of wool being 26 stone of 14 lbs . each, are three other practical commercial considerations that rendered septimal division of the half-stone into pounds a real convenience. The English hundredweight is not the only one that consists of 112 lbs. ; those of Altona, Hamburg, Hanover, Holstein, Rostock, and Stettin, are similarly subdivided.

The subdivision of the present pound into 7000 grains seems to have been merely the result of accident, in the adaptation of former measures to each other on the correct principles of natural systematic development ; though in this case the results shown in retaining the Troy grain with the avoirdupois pound, and allowing both the ounce and the dram to involve fractions of grains, were particularly unfortunate.

The so-called septimal subdivision of weight hence appears to be due to a particularly unfortunate series of causes now relatively unimportant. The subdivision into eighths or octaves is the real mode of dividing the hundredweight, each eighth consisting of 14 pounds;
the pound is also successively divided into sixteenths among all civilised nations ; the English 7-pound weight and 7000 grain subdivision are inconvenient. Were it not for the involved change, it would be best to divide the pound either into 8000 grains or into 6400 grains; and besides, to abolish the hundredweight of in $2 \mathrm{lbs} .$, thus ridding the English system of the anomaly and encumbrance of septimality. ${ }^{1}$

Combined Modes of Subdivision.-When any collection of measures, as in England, presents a combination of all the foregoing modes of subdivision, it certainly appears complicated. The first wish of the calculator and of the scientific and professional man is then to render it convenient for calculation by modification. The last wish of the commercial man and tradesman is that the measures he uses should be altered in any way, for the reason that he does not calculate beyond narrow limits, but does wish to retain the measures to which he is accustomed, for purposes of weighing and measuring. In other words, each department of trade may have its requirements met by some portion of the rather heterogeneous collection, while rarely does any tradesman calculate throughout the entire series, or want to do so ; he does not reckon from the cubic yard and go on through the pint or the gallon to the hundredweight or ton ; and, besides, is quite indifferent regarding those who really have to do so, for he considers they should have a system of their own without interfering with his. Certainly, a series of commercial measures well suited to their object should not be broken up for

[^12]professional or scientific purposes; the modes of subdivision suit the tradesman, and should not be radically altered. The various anomalies-such as stones of different sorts, tons of various description, also lasts and sacks, and the various quarters, quarts, and quarternsare mostly matters of denomination, that may be adjusted by alteration of names. The rejection of some secondary units, and alterations of value not exceeding 5 per cent., could meet but little opposition. But any radical alteration of a useful system could only be the suggestion of one indifferent to the commercial convenience of the millions that use English measures.

In the Dominion of Canada, where the inheritance of old and heterogeneous measures was an incubus rather than a convenience, English measures have in the main been adhered to. The Act of 1873, legislating for the period of 1880 , retains the English footmeasure, and from the standards made for Canada, its decimal multiples and sub-multiples appear in vogue there ; it also adopts the cubit foot as a measure of capacity for gas, and all the English measures of capacity from the bushel to the half-gill ; it adopts the English pound, the old English Troy ounce, and the English grain, and the decimal multiples and sub-multiples of all these three measures of weight. The old French measures of the province of Quebec are now limited to the Parisian foot, perch, square perch, and arpent. As regards the metric system, which has been permissive in Canada since April 1871, Mr. Brunel, the head of the Weights and Measures Department, states that ' he is not aware that it has been used by anyone in 'Canada, and that there does not appear much proba'bility of this system being generally used there, though
' it has been adopted to some extent by scientific men 'for purposes of comparison' (see Warden's Report for 1874-75).

It may here be noticed that not only is Canada less fettered by the measures of the past than England, but that the province of Quebec with its old French associations may have supplied the scientific men that to some extent used the metric system.

If, then, the Canadians have already avoided a sentimental alteration of their commercial measures, it may be hoped that the English-speaking races will never fall into the blunder of applying French measures to their own commercial purposes. There are scientific men living out of France able to make a better system, and an English one, suited to English requirements.

Apart from the inconvenience attending the introduction of foreign measures, and the difficulties inherent in any attempt to incorporate them into any pre-existing system, it will be noticed, on examining the tables of systems, that there is considerable inconvenience attending combined modes of subdivision of any sort, when incorporated in a single system,

When a system is, like the early English, binary throughout, when 8 ounces $=1$ marc, 2 marcs $=1$ pound, 8 pounds of wine $=1$ gallon, 8 gallons $=\mathrm{I}$ bushel, 8 bushels $=\mathrm{I}$ quarter, 4 quarters $=\mathrm{I}$ chaldron, the simplicity is convenient for trading purposes; when in the Chinese measures I tching-weight of rice $=1$ tching of capacity, ro tching $=1$ ten, , 0 ten $=1$ tche, and, again, I tching $=$ ro fun, I fun $=\mathrm{roli}$, I li $=\mathrm{r} 0$ hao, I hao $=10$ ssa, I ssa $=$ Io hoe, \&c., the simplicity is convenient for purposes of calculation. Whenever a ternary subdivision intervenes, as the English yard into three feet, the butt
into three barrels, homogeneity ceases ; when an unaliquot term is introduced, as the pole of $5 \frac{1}{2}$ yards, the chaldron of $4 \frac{1}{2}$ quarters, incongruity results.

A combination of several systems, each the best in its own way, would not retain the advantages of any.

For instance, how needlessly complicated is the timehonoured subdivision of the medical or monetary pound, or of the marc:- 20 grains $=1$ obolus, 2 oboli $=1$ scruple, 3 scruples $=1$ dram, 8 drams $=1$ ounce, and 8 ounces $=1$ marc, or 12 ounces $=1$ pound, as the case may be. The needlessness of an additional pound of 12 ounces in a system possessing a commercial pound of 16 ounces is now perfectly recognised ; a marc of half-a-pound $=8$ ounces answers every purpose without encumbering a system with duodecimals. Again, the scruple of onethird of a dram is of comparatively little practical use, and the introduction of ternary units in a binary series here shows to disadvantage ; the English scruple has hence been nominally abolished. The old medical pound of Europe of 12 ounces, or 5760 grains, gives a marc of 8 ounces or 3840 grains, or a commercial pound of 16 ounces or 7680 grains ; but if it is both practically and theoretically unnecessary to complicate the subdivision with the third of any of its sub-units to be expressed in a perfect number of grains, the whole arrangement of the subdivision immediately admits of simplification to an extent that was not possible before. The marc can then be made equal to 3200 grains; the ounce or eighth will then be 400 grains, and the dram, its eighth will be 50 grains ; or, by an alternative arrangement, it may be preferred to make the commercial pound 8000 grains, the marc 4000 grains, the ounce its eighth $=500$ grains.

On the whole, then, it may be safely said that combined modes of subdivision are generally troublesome, though various combinations of the binary with the decimal system may be so devised as to be convenient, also that the simple binary, or the simple decimal mode of subdivision are severally in their own ways the best, the one being suited to commercial, the other to scientific and geodetic purposes.

This being generally well-accepted by those conversant with the subject, it becomes of interest to draw conclusions as regards the best practicable mode that could be adopted in England.

Already the distinction between scientific units at 32° and commercial units at 62° is fully recognised, both by officials and the general public. Hence the English scientific system should consist of purely decimal units at 32°, belonging to existing measures. This is carried out in the English scientific system described in a succeeding chapter and used throughout the tables. This system, extending over a wide range, can then form the skeleton or framework for intercalation in rearranging the commercial units on a binary or on a mixed decimal and binary mode whenever requisite. A proposal to this effect is made among the Proposed and Typical systems at the end of this book.

257

CHAPTER II.

THE COMMERCIAL SYSTEMS OF EUROPE.

An examination of the English system of commercial measures given at the end of this chapter, and a comparison between it and any other natural commercial system of measures in the world, will show it to be either as good or nearly as good as any other, excepting in one or two respects; while if the whole of the circumstances and conditions be taken into consideration, it may be considered the first, from being most suited to the circumstances and the people.

A country of large commercial transactions in every branch of trade is necessarily most liable to a superfluity of measures ; and hence also to a considerable amount of incongruity; but when the extent and the diversity of English commerce is borne in mind it is a fact worthy of notice that the natural English system is a single system, having one foot, one mile, one acre, one 'pound, one gallon, and one bushel.

It will not, it is true, bear comparison with the French system as a scientific one, although it is infinitely superior to it for the commercial purposes of weighing and measuring in ordinary trade transactions; in fact, the pre-eminence it has is due to the fact that it
is not a scientific system, but purely adapted to convenience in commerce at an ordinary temperature. ${ }^{1}$

A purely artificial scientific system may be devised in a day, and with hardly any thought or care. The length of anyone's walking-stick may be taken as the basic unit of length, and a decimal system may be derived from it which will have a perfect uniformity and simplicity. As for the names, Greek and Latin affixes, or even German and French affixes, may be easily applied. But such a system would necessarily neariy ignore the exact wants of many branches of trade ; and the haphazard plan of applying in trade the nearest applicable unit afforded by such a process is not a satisfactory one, as it amounts to a practical indifference to the requirements of commerce.

A commercial system of measures requires time for perfect development ; it must be suited to the race, and their forms of thought and calculation ; it must also prove its suitability to all trading purposes through a long practical employment ; and finally, all improvement and systematisation, readjustments and rejections, should be gradual alterations, aiming at the perfect development of the original system, and at a convenient practical uniformity and simplicity, without violent departures, or borrowing extraneous measures from other nations.

Among the systems of Northern Europe, the Swedish,

[^13]the Danish, and the Prussian systems (see pages 289, \&c.) seem to be complete and regular.

The Swedish system is excellent ; its measures of capacity are arranged in strict accordance with cubic measure ; but it is deficient as regards the measures of weight; the relation of weight to capacity is either doubtful or non-existent, while the large number of various pounds used for different purposes till very lately constituted a serious drawback.

The Danish system is also an excellent one ; its basic unit, the foot, is based on the length of a simple pendulum beating seconds at sea-level in vacuo at a latitude of 45°; and thus possesses the peculiarity of not being dependent on the exactitude of preserved standards, although the reconstruction of a standard would involve rather intricate reduction of value. The Danish foot is also adopted in the Prussian system as the Rheinfuss; while the whole of the Danish system is used in Norway, although there may be some differences due to slight fluctuation of value in the standards. The Danish measures of capacity are arranged in accordance with cubic measure, although they have not the same regular binary arrangement that constitutes the beauty of the Swedish and of the English system. The Danish commercial pound is the weight of $\frac{1}{62}$ of a cubic foot of water at a normal temperature, and this scientific arrangement renders the system complete ; it has, however, the defect that there is also a second pound for monetary and perhaps for a few other purposes.

The English system will compare favourably with both the Swedish and Danish systems as regards the regularity of its measures of capacity and their subdivision, though connection between weight and capacity
is inferior ; while, now that separate Troy weight and apothecaries' weight are both legally abolished, it has the advantage of having a single series of weight-units.

The Prussian system is in some respects superior to the Danish and Swedish systems, in others not so good. It has two sorts of foot-measures, one the Rheinfuss, the other a geometric foot, a tenth of the ruthe ; it has two pounds, one the commercial pound, another the medicinal pound of 12 ounces, a double method in vogue in Germany generally, from which English measures are free. The Prussian measures of capacity are in accordance with cubic-measure, being in aliquot ratios to them. The subdivision of the capacity-measures is well arranged in accordance with trade requirements from the quart to the fuder and the malter. The measures of weight are in accordance with the capacity-measures, the commercial pound being $\frac{1}{66}$ of a cubic foot of water in vacuo at the temperature of 15° Réaumur ; while the marc or half-pound retained is the ancient unit, the Cöln marc but slightly varied in value; the other measures of weight follow the forms of multiple and sub-multiple well suited to German custom.

If, after scrutinising these three systems, the English system be examined, its advantages and defects become more clearly apparent. Its single system of linear measures is free from two sorts of foot, pole, or mile, or two sorts of inch-faults common to German systems; its single system of measures of surface, one square pole, rood, and acre, is also an advantage, although it must be admitted that the acre is inconvenient from the acreside not being a round number. The remedy for this defect could be easily supplied by the adoption of the square furlong as a hide, which would be the

64 th part of a square mile, while its side would be a furlong or 220 yards exactly: the hide would then be equal to 40 roods, or 10 acres, and the rood equal to 40 perches as before, without altering any measures at all ; and the acre could be permissively retained until it became unnecessary and practically obsolete. A further improvement in the series of surface units might be effected by making the rood exactly 10000 instead of 10890 square feet. The present series, though single, is exceedingly bad as regards subdivision.

The series of English measures of capacity form a nearly complete binary system, equalled only by the Swedish; they are deficient, however, in one most important respect, that of not being in convenient accordance with cubic measure ; for instance, the gallon is nominally 277.273844 cubic inches, and the whole system is correspondingly defective. The principle of basing the gallon on an arbitrary old French pound avoirdupois, that was never any part of the early English or Anglo-Saxon system, has been the cause of this difficulty. In the earlier period the gallon was eight pounds of wine, the pound being then an English pound. The incorporation of the French pound, after Cressy and Poitiers, into the English system thus disarranged the whole of the measures of capacity. The accordance of the latter with the measures of weight is, however, well defined.

There is also a defect in the upper part of the series ; they do not correspond above the gallon for both wet and dry measures ; the bushel is 8 gallons, the quarter 8 bushels, and the chaldron $4 \frac{1}{2}$ quarters in dry measure ; while in wet measure the firkin is 9 gallons, the kilderkin 18 gallons, and the barrel 36 galfons. Formerly and
for nearly a century and a half, the barrel of ale was 32 gallons, the kilderkin 16 and the firkin 8 gallons; the firkin and bushel being identical in capacity ; the Elizabethan barrel of wine was also 32 gallons.

In the lower part of the scale the objection that a minim was not exactly a grain in weight has been met by introducing a series of liquid-grain measures into the system which will eventually perhaps supersede the old minim-measures entirely.

Proceeding to the English measures of weight, the utmost that can be said for them is that they form a single system, one pound, one quarter, one hundredweight, and one ton ; there are not two sorts of liespfund and two sorts of schiffpfund, as in the German system, nor 5 or 6 liespfund and markpfund, as in the Swedish system. But beyond this advantage of simplicity and unity, there remains hardly a single advantage. The ounce is not exactly the $\frac{1}{1000}$ of a cubic foot of water, although very nearly so, and thus the adjustment of the whole series is imperfect. The Danish pound is $\frac{-1}{6}$, and the Prussian pound $\frac{1}{66}$ of the respective local cubic foot of water, but until the English ounce is made exactly the $\frac{10}{1000}$ of a cubic foot of water, and the pound the $\frac{16}{1000}$, the connection is imperfect. The error in adjustment is less than $\frac{3}{10}$ per cent., and could be easily effected as soon as the misplaced veneration for the French avoirdupois pound has faded, without causing any serious disturbance in commercial transactions.

The subdivision of the English commercial pound is at present clumsy. It consists of 16 ounces, while the ounce is 16 drams, and the pound is also divided into 7000 grains, thus making the ounce $437 \frac{1}{2}$ grains, and the dram 27.34375 grains. The cause of this very
inconvenient arrangement must be sought at its source ; the avoirdupois pound originally consisted of 7680 grains, and thus the ounce was 480 grains, and the dram 30 grains ; but as the old Troy pound consisted of 5760 Troy grains, and the avoirdupois pound was equivalent to 7000 of these Troy grains, the avoirdupois grain was abolished in the reorganisation of 1824 , and the Troy grain alone retained ; this unfortunate combination of Troy and avoirdupois measures has brought about the above result. It would have been better to have entirely abolished the Troy and the medicinal systems without retaining the Troy grain. A grain of either $\frac{1}{6400}$ or of $\frac{1}{8000}$ of the pound avoirdupois would give convenient values in grains to both the ounce and the dram.

It may be here mentioned that there is a widespread belief that there are still three stones existing in the English system, one of 14 lbs ., one of $10 \mathrm{lbs} .$, and one of 8 lbs.; the old meat stone of 8 lbs . is, however, declared an obsolete illegal measure in the Warden's Annual Report for $1876-7$; while a stone of wool, or a stone of flour has always been 14 lbs ; the retention of obsolete measures in parts of the country cannot therefore be urged as a defect in the system itself.

If then the advantages of the English system balance its defects, or even nearly so, and allowance be made on the score of the immense commerce of England in comparison with that of Sweden, Denmark, and Prussia, and the consequent difficulty in effecting modification and improvement of measures, the English system may be fairly considered as good as any of them for purposes of trade.

While examining the systems of other countries a
marked line must be drawn between the natural systems peculiar to those countries and the artificial or metric and modified metric systems. The natural systems of the Hanse towns, Hamburg and Bremen, and those of Saxony, Brunswick, Gotha, Mecklenburg, and Oldenburg are inferior in systematisation to the Prussian system, although resembling it generally, and hence require no special comment.

The Austro-Hungarian system can hardly be said to present any preponderating advantages either as a system or from the values of its units, or the connection between them ; in this latter respect it appears rather unfortunate. Its advantages rather lie in the fact that it is or was a single imperial system adopted to a wide extent over many provinces, and that these centralised Austrian measures, perhaps inferior in themselves, were important from their wide acceptation. The Hungarian units given in Part I. are not European but Asiatic, and are parallel with Ottoman measures. The South German systems of Bavaria and of Würtemberg correspond slightly to the Austrian system, more especially the former. Of these three, the Würtemberg system is by far the most simple and well-arranged generally ; decimalisation is adopted, where applicable, among the inches, feet, and poles or ruthen, and binary subdivision is employed throughout the measures of capacity generally as most suited to them. The triple system of liquid measure, the hellaichmass (for clarified wine), the trübmass or mostmass (for unclarified wine or wort), and the schenkmass for retail sale, is the principal defect in these South German systems. In North Germany the double system of visirmass for gauging and schenkmass for retail sale is sufficiently troublesome, but on the whole the North-

German systems are much superior to those of Southern Germany.

The Russian system bears a strong similarity to the English ; the Russian foot is identical with the English foot, thus making that unit the most widespread and largely-used linear measure of the whole world; and the whole of the Russian measures of capacity are based on weight, the vedro containing 30 lbs . of water, the tschetverka 64 lbs ., and the whole of the rest in accordance with the English method. The Russians still, however, possess two pounds or funt, one the commercial, the other the German medicinal pound of Nuremberg. The dessätina of 2400 square sasheen is in accordance with English measure, the sasheen or fathom being exactly 7 English feet; and the werst, of 500 linear sasheen, is 3500 English feet. A peculiarity in the Russian series of weight-units deserves notice ; both the stone and the hundredweight are absent, but there is a pud of 40 pounds, a berkowitz of 10 pud or 400 pounds, and a ton of 6 berkowitz. The pud is nearly half an English foot-weight or talent, about 36 pounds avoirdupois, and the berkowitz appears an approximate load of nearly 3 English hundredweight. The load (a camel load), perhaps the most widely used weight-unit, thus becomes important in the Russian system. The arrangement indicates that stones and hundredweights may be dispensed with in a commercial system. The accordance between English and Russian measures renders English and American tabular and scientific values of great value to the Russian, a convenience of which they avail themselves to the utmost.

A further increased similarity of the Russian and English measures may probably be made after the

English pound has been adjusted to cubic measure, as before explained ; in that case the Russians would be wise to discard their two pounds, and adopt the single English pound as the basis of their systems of weight and capacity, thus completing the correspondence in every respect, and making one foot and one pound, of ${ }^{\frac{16}{10} 00}$ ths cubic foot of water, the most commonly used units in the world.

The French system, adopted for commercial purposes since IS40 in France, Holland, and Italy, and more recently adopted by other nations that are now in the unenviable state of transition from natural to artificial measures, may be said to be at present the most perfect system for scientific purposes and for purposes of calculation; these advantages would, however, be attained by any rigid decimal system.

For the ordinary purposes of commerce, and for all operations of weighing and measuring, it is of considerably less value. The units themselves, the mètre and the kilogramme, are particularly inconrenient and perfectly arbitrary ; they coalesce with none of the natural measures of Europe, and are devoid of significance; the mètre is not, as was once supposed, a geodetic unit, and the kilogrammes of ordinary use are copies of the kilogramme de l'Observatoire, which is a doubtful copy of the kilogramme des archives, whose density cannot be determined by immersion from fear of injury. This latter kilogramme was the solitary standard originally made in 1799 by Fortin. The accepted description of the mode in which this cylinder was scraped to the size necessary to represent the weight of a décilitre of water, and its doubtful density, render its relation to a cubic decimètre of water rather doubtful from a scientific
point of view, while its copies twice removed are not likely to be better.

Apart from the excessive pretensions of the metric system, and the method of propagating it by complimentary expressions and devices, there cannot be found any advantage in it beyond that already mentioned, which would be inseparable from almost any complete and rigid decimal system.

The disadvantage in commercial dealings arising from the want of binary subdivision in the metric system is partly amended by using double measures and half measures of each unit in the decimal scale.

The transition period of measures in France, during which old measures were still actually, though perhaps not legally, in use, must have been nearly half a centurya considerable disadvantage. But drawbacks of this description were trivial to a nation that had an enormous number of old measures in inextricable confusion, probably more than a hundred values of units of landmeasure, and so forth. The large variety of measures in former use in France, in Italy, and in the Netherlands rendered any new single system a boon; the same may also be said of the Empire of Germany.

In the British Empire there is fortunately no such multiplicity of measures as to demand their abolition in favour of the introduction of the metric system, and if a decimal system were required, the decimalisation of some of the units in common use could be much more conveniently effected and applied in commerce. Besides, our experience in the past, from the adoption of the French avoirdupois and Troy pounds in preference to the old Anglo-Saxon merchant's pound, or any of the really English pounds, and the incubus they have been to our
system up to the present day, constitute a standing warning against adopting the newest French fashion in measures, apart from the difficulties of a transition period, which would be probably greater in England than they were in France.

On an examination of the metric measures that have become actual commercial units, apart from the nominal metric measures that are mere names, the first and most striking peculiarity that presents itself is the rarity of the cases in which the values approximate to any of the natural measures of the civilised world, and the utter impossibility of reducing metric values to natural values in any system, by means of simple multipliers and divisors. This last feature renders any attempt or proposition to incorporate metric measures in the natural measures of any country perfectly impracticable. This is perhaps extremely fortunate as saving much confusion that would otherwise accrue from the efforts of the metrepropagators ; in fact, as far as can be discovered, there has been only one such attempt yet made, the result being that the two sets of units remained purely distinct.

Taking the commercial metric units in detail, the metre answers the purposes of the English yard, the Spanish and Portuguese vara, and the stab, or double ell of Germany, and corresponds to the half-fathom of some other nations; it is therefore a practically useful unit. The centimètre of about half an inch of most nations is a small and rather inconvenient unit; the decimètre is of little utility in measurement, and the millimètre is too small for most commercial purposes, its utility being confined to scientific employment and purposes of numerical expression. The kilomètre is a
small mile, which possesses no intrinsic advantage apart from its decimal advantages. These decimal advantages must be considered as perfectly separable matters, not as inherent in the metric system. The metric units of length are hence, with one exception, exceedingly inferior as commercial units, while the absence of any unit of length approaching in value to the foot of most civilised nations is a most serious defect. The nominal metric units of length - the decamètre, the hectomètre, and myriamètre, and the double decamètre or chain of 20 mètres, can hardly be considered as accepted commercial units of linear measurement.

Among the metric units of surface, which are excellently arranged with regard to each other, the square mètre is a practically useful unit ; the hectare of about $2 \frac{1}{2}$ English acres is nowhere near the surface-units of any civilised nation, with the solitary exception of Russian dessätina ; and the square kilomètre does not approximate to any known square mile. The decimal interdependence of the metric surface-units is exceedingly convenient ; a square kilomètre being ioo hectares, a hectare 100 ares, and an are 100 square mètres; but this would accompany any decimal system based on other non-metric units. There hence appears to be only one really useful and convenient commercial unit in this series, while the rest are hap-hazard decimal multiples.

In the metric measures of capacity, the litre is the basic unit ; theoretically, this represents the volume of a cubic decimètre ; but as, in fact, there is no such primary standard cubic decimètre of capacity, the litre is merely a measure containing a kilogramme weight of water, that cannot be practically tested, but merely verified by computation. This defect is due to the temperature of
4° Centigrade being taken as the standard for the watcr, and that of 0° for the vessel.

As a commercial unit, the litre is excellent; it is a very convenient and practical bottle-measure of wine or any liquid, and specially useful among nations with whom wine is an article of daily food and ordinary consumption. The décilitre and centilitre are mere decimal sub-multiples of the litre, and unimportant as units ; the cubic centimètre or millilitre, equal to abnut 15 English liquid-grains or 17 minims, is the druggist's small unit of capacity. Whether such a quarter-dram is a practically convenient unit or not is very doubtful ; apparently it is either too small or too large; all the assumed advantages in connection with it are really only those of decimalisation. The hectolitre of about $2 \frac{3}{4}$ English bushels is nowhere near any corresponding grain-measure, scheffel, or fanega, of civilised nations. Among the metric measures of capacity, the litre-bottle is therefore the only commercial unit of practical convenience.

Continuing to measures of weight, the gramme is too large a unit for the more delicate commercial purposes for which other nations employ a grain ; though in scientific matters its decimal sub-multiples down to the milligramme effect all the objects of persons quite indifferent about the values of the units they employ. The kilogramme is more than double the pound of any civilised nation in Europe, and hence an inconvenient unit as regards value, but it certainly is an approximation to the Turkish oka and the Indian seer, the former being about a fourth more, the latter about a tenth less. The quintal resembles the kilogramme in its relation to the units of other nations, the hundredweights, centners, and
quintals of Europe, and also is distant from the cantaros and maunds of Asia. The millier, bar, or tonne, sometimes also called a tonneau, is, however, a practically useful metric ton, and thus forms the solitary metric unit of weight that possesses real commercial convenience.

Summarising the results of the foregoing examination, the metric system affords the following convenient commercial units, the mètre and its square and cube, the litre and the metric ton; or one unit of length, one of surface, one of capacity, and one of weight, while the rest are unimportant decimal muiltiples and submultiples. Could any decimal system do less? Apparently not, unless devised with the declared object of ignoring all commercial convenience. It is, however, possible that any English schoolboy would decimalise better for English purposes on a walking-stick selected by him from a bundle. As a French scientific system, the metric system is excellent, for the single contact with natural commercial measures in each class is just sufficient for all such purposes; as a French commercial system it is an inferior one, adopted as a preferable alternative to the enormous collection of heterogeneous old French measures ; for other nations falling into the same unfortunate predicament it is a pis aller, a mere mode of extrication; but for any country possessing a good single natural system of commercial measures, it is a snare and a delusion, that much resembles the soufflée, the fondant, the champagne-mousseux, the crinoline, and other inflated French inventions of puerile type.

As a universal commercial system it is deficient from the fact of its being decimal, for most commercial nations and races are essentially binary in habit and form of thought. The exclusive Chinese are decimal in
habit ; for them it would be well suited, were it not that all this decimalisation has been borrowed from them, and that they subdivide to trillionths already with habitual ease ; hence it might be more in accordance with the fitness of things for the French to have applied Chinese and Japanese prefixes to their metric terms. The Romans thought in duodecimals, the Greeks principally in sexagesimals, and the English, who afforded the French instructors in Latin in the time of Charlemagne, ${ }^{1}$ have, like the rest of the Indo-Germanic races, always thought naturally in eighths. The English system of measures, which is commercial in origin and development, would, with a small amount of modification, form by far the most suitable universal system for Europe and the world; and even in the event of decimalisation superseding binary subdivision, a decimalised English system of measures based on English units would answer the corresponding purpose.

The enormous increase of French manufactures and general trade since the Cobden-Saint-Simonist Treaty, has been frequently urged as a reason for preferring French to English measures as a universal system ; and

[^14]hence this basis of argument cannot be neglected in its bearing on systems. It assumes that, as in the past the English, represented by the Cobden school of policy, have facilitated by treaty the loss of manufactures and commerce, and given English coal, iron, and manufacturing power in return for Lyons silk dresses and ornamental fabrics, in the future this doctrine will be perpetuated; that the English are bound hand-and-foot by a false form of free-trade, and cannot extricate themselves from this vicious circle. Certainly, if at intervals the English make commercial treaties of that sort, English trade is doomed to entire extinction; but the assumption of perpetual stupidity is too far-fetched, the English are progressive, they do profit from experience, and may yet retain the most important share of the commerce of the world, and sustain the ascendency of their own measures.

Besides the simple metric system as applied direct to commercial measures in France, Holland, Belgium, and Italy, for a long time past, there are several systems based on metric units, or modified metric systems, that either answer the purpose of a temporary or transitional system and lessen the abruptness of a change from natural to artificial measures, or afford a convenient relation to metric measures for countries and nations having a trade exclusively connected with that of others whose system is already metric.

The systems of this class are the French mesures usuelles, used from 1812 to 1840, as transitional; the Baden system, used from 18 io till lately; the Darmstadt system, adopted in the Grand Duchy of Hesse since 1818; and the Waadt system, exclusively used in the Canton Waadt since 1822, and partly in the Cantons Valais,

Schweitz, Uri, Zug, Zürich, Glaris, and Grisons, for some time, but afterwards applied to the whole of Switzerland. These four systems having been expressly devised to meet commercial convenience, are necessarily more suited both to purposes of ordinary trade, and to the people that use them, than the metric system itself; the latter being, on the other hand, preferable for scientific purposes only. The values of the commercial units of these systems are multiples and sub-multiples of metric units, but have local names in accordance with the old local measures ; such units are necessarily $\cdot q u i t c$ out of accordance with any natural measures as regards exactitude, but approximate to them for purposes of convenience. It is evident that these systems in coalescing with metric units are cut adrift from all natural measures, and aim at adaptation to metric measures in combination with a superior adaptability to commercial purposes ; in these objects they certainly succeed. On examining these four systems together, it will be noticed that the relation of the commercial foot to the mètre is diversely fixed, thus :-

	France.	Baden.	Hesse.	Switzerland.
Foot	$\frac{1}{3}$ mètre	$\frac{3}{10}$ mètre	$\frac{1}{4}$ mètre	$\frac{3}{10}$ metre

also the French pied usuel is divided into 12 inches, and in the other three cases the foot is divided into 10 parts or tithes. These arrangements have important effect on the development in the square and cubic measures. Of these methods the Hessian is certainly preferable.

In surface-measures, the principal unit in each case holds some connection with the metric hectare, and with the smaller units of its own system, thus:-
Surface unit,
pose or morgen $\left\{\begin{array}{cccc}\text { France. } & \text { Baden. } & \text { Hesse. } & \text { Switzerland. } \\ \text { I hectare } & 0.36 \text { hectare } & 0.25 \text { hectare } & 0.45 \text { hectare } \\ \text { Ioo square } & 400 \text { square } & 400 \text { squate } & 500 \text { square } \\ \text { perches } & \text { ruthen } & \text { ruthen } & \text { ruthen }\end{array}\right.$

In small units of capacity the distinctive unit is thus connected with the litre, and with the smaller cubic units of its own system :-

寺	France. I litre			
unit	ub. toise	${ }_{9}^{5}$ cub. in	cub)

The.pound adopted is a half-kilogramme in every case.
The modes of subdivision adopted for the measures of capacity as well as throughout the four systems generally, are thus :-
\(\left.\begin{array}{ccccc}Mode of sub-

division\end{array}\right\} \quad\)| France. |
| :---: |
| Mixed |\quad| Baden. |
| :---: |
| Purely |
| decimal |\quad| Hesse. |
| :---: |
| Binary | | Switzerland. |
| :---: |
| Nearly |
| decimal. |

Taking the connections of the measures with the cubic measures of the respective systems, that of Switzerland is the most convenient, that of Hesse correspondingly good for a binary system, while that of Baden, though regular, is clumsy, and that of France is convenient but rather irregular.

The comparison of these four systems of the same class of arbitrary artificial measures, adopted with untrammelled choice under very much the same conditions, affords a most useful and instructive example to those that advocate modified metric measures for England, America, or any other country, possessing a large trade with France, and wishing to satisfy both the internal and the export requirements of trade-convenience by a single intermediate system. Of the above four attempts, the Hessian system seems the preferable one in almost every respect ; but whether any of these
methods is worthy of imitation is very doubtful ; probably the English method of using the purely metric system itself as a legally permissive system, whenever it may happen to suit the circumstances of a case, is a better alternative.

Returning to the subject of the natural measures and systems of measures of the past century, after this digression on the subject of artificial or metric units and measures, it may be here noticed that it has not been considered worth while to introduce in this book the old French measures existing before 1799, nor the old measures of the Netherlands. They were voluminous and complicated to a fearful degree, and now that they have not only been legally abolished, but also been allowed to fall into practical oblivion, for a very long time, they are seldom referred to. Even in local books, when these measures are referred to, their values in new measures generally accompany them. The old French measures that were principally in use at Paris have not entirely yet vanished from France ; persons still talk of and sell onces of tobacco, and acres, arpents, \&c. of land in France itself; in the French Antilles and some of the French possessions they are still referred to ; while in the Canadian province of Quebec the perche and the arpent de Paris were legally abolished only last year. Doubtless, there are many persons ready to inform one that all old French measures were abolished by law in the month Germinal of the year III. of the French Republic ; in spite of this, stern facts remain, and require explanation.

The collection of old Parisian measures is therefore given among the tables of systems; but as a rule the older measures of various countries, that have existed
or been in use within the present century, and survive in language, books, and records, rather than in actual use, will be found not among the tables of systems but among the tables of measures in Part I., under the heads of Former Local or Special Values.

The old Italian measures, the German measures that have been for a long time abolished, and the old Swiss measures, will be thus found. As regards the German measures that have been abolished by law in the last few years and are merely surviving through a transitional period, these are necessarily treated in this book as recent measures still existing, because reference to them is frequently made and their values in English and in French terms are often wanted.

The Spanish and the Portuguese measures are supposed to have been abolished even as long ago as the Italian measures, and to have similarly made way for French metric measures. Though the old Italian measures have, with the exception of various local landmeasures, been completely abolished as regards reference and expression, as well as by law, the Spanish measures have not yet vanished to the same degree.

The Spanish system is on the whole a good one; it much resembles the English in its advantages and defects, though certainly less simple and hence inferior; it requires a comparatively small amount of modification and adjustment to render it an excellent system, and far superior for commercial purposes to the metric system partially adopted in preference to it. The linear measures, up to the furlong of an eighth of a mile, and the mile of 5000 feet, are good and more simple than the corresponding English measures. The square measures include some rather complicated land-units; and if
the celemin, fanegada, and yugada were replaced by a square furlong and a square mile (in the same way as is much wanted in England), this class of measures would also become perfect.

The Spanish measures of capacity are, like the English, independent of local cubic measure ; the drymeasures are simple and convenient units, but the liquidmeasures, from having two arrobas and four butts of various sorts, inclusive of pipes, are extremely inconvenient. Were the term arroba abolished from the capacity-measures, and the whole of the liquid capacitymeasures readjusted in strict accordance with the drymeasures, as well as with the cubic units, the whole would form a useful commercial system. The origin of the Spanish capacity-units is probably the makuk, and other Moorish and Arab units ; while the Spanish cubic units are Gothic ; hence the divergence of the two series.

The Spanish measures of weight are simple, excellently arranged, and admit of little improvement ; there is but one pound of commerce, and the marc or halfpound is merely differently subdivided for monetary and medical purposes; the arroba of 25 pounds, the quintal of 100 pounds, and the tonelada of 2000 pounds, complete this very well-arranged class of measures.

The Portuguese system is greatly inferior to the Spanish system; the linear measures are complicated by an inconvenient cubit, and an irregular mile ; the single land-measure, the geira of 4840 square varas, is, however, advantageous, and so also are the liquid-measures which are simple; the two alqueiras, one liquid, the other dry and of another value, are, however, troublesome.
The Portuguese measures of weight resemble the Spanish
in all respects, excepting that the multiples adopted are less convenient.

The measures of Greece and Turkey in Europe will be given in the collection of Oriental measures in the following chapter, as they belong to a type distinct from the generality of European measures.

It may be here noticed that systems of the European type are markedly distinct from Oriental and Asiatic measures, apart from causes referable to mere geographical position and location of the races using them.

It is perhaps quite possible to assign an Asiatic origin or derivation for every measure in the world at present in existence ; but in some cases this derivation is very remote, in others comparatively so, and in a few cases hardly admits of being clearly traced. European measures under their own distinctive type have become changed in a way peculiar to themselves, and differ in system and in arrangement from the Oriental systems from which they may have been derived.

The Moslem sway carried Oriental measures over North Africa, parts of Southern Europe, and the whole of Western Asia. The retention of those measures in the countries from which the Moors and Moslems were expelled was not of long duration, while the measures of the same type are retained in Moslem countries to the present day. The Christian form of religion is hence generally associated with distinctive type of measures, nearly peculiar to Europe at one period, but subsequently carried into America, where few indigenous measures are known to have existed. The peculiarities principally consist in the adoption of a foot as a basic standard unit of length, in preference to a cubit or ell, in using a pound as a standard unit of weight in preference to an
oka or larger unit, and in employing a systematised series of true measures of capacity in preference to measures of weight for liquid and dry merchandise. The adoption of these three principles seems to be distinctive of a race free from Moslem sway, and generally but not always peculiar to a Christian and European race. Any single one of these three principles may be ultra-European ; thus the Arab rottal and vakia correspond exactly to European pounds and ounces, but the Arab foot is, when retained, not the primary unit of length, but gives way to the cubit ; in China there is both a foot and a pound, but in China and Eastern Asia generally the capacity-measures are merely nominal, often hardly known to the masses, and replaced entirely by measures of weight in trade transactions. In Southern India, and the Burmese peninsula, beyond the limits of Moslem preponderance, true measures of capacity may be found, but then in most cases either the foot or the pound is missing. Such races have a geographical location at present widely distinct from that of the European races, and markedly separated from them, by the intervening extent of continent long retained under Moslem sway. The division of the measures of the world into three great classes, the European or Christian, the Oriental or Moslem, and the East-Asiatic or Pagan, is hence comparatively well-defined. As to indigenous African measures little is known, the North African measures being Oriental, and the South and East African measures being clearly assignable to an EastAsiatic origin. The indigenous American measures, like the aboriginal American races, have become matters of archaic curiosity.

The collection of the European systems of commercial measures here given is arranged in order as follows:-
I. Early English Measures. The Present English. System. Conversion Tables.
2. The Russian ; the Danish and Norwegian ; and the Swedish Systems.
3. North German Systems (ten in number).
4. South German Systems : Austria, Bavaria, and Würtemburg.
5. The Spanish and Portuguese Systems.
6. The Old Measures of Paris, Amsterdam, Brussels, Florence, and Venice.
7. Metric Systems. I. Present French System of France, Italy, and the Netherlands, with Conversion Tables; 2. The Mesures usuelles ; 3. The Baden System ; 4. The Hessian System ; 5. The Swiss System.

Early English and Anglo-Saxon measures.

Inch $=3$ barleycorns
Foot $=12$ inches
Yard or ell $=3$ feet $=16$ nails; (the Elizabethan ell $=45$ inches abolished) Rod (decemped or perch) $=$ го feet
Pole $=5 \frac{1}{2}$ yards ; (also poles of 6,7 , and 8 yards, and of 25 feet) Furlong $=40$ poles
London mile $=1000$ paces $=5000$ feet
Common mile $=8$ furlongs $=5280$ feet .
Square pole $=30 \frac{1}{4}$ square yards
Rood $=40$ square poles
Acre $=4$ roods
Hide $=100$ acres.
London (Stricken) measures for wine, corn and all produce.
Pint or pound of wine $=$ nearly 29 cubic inches
Gallon $=8$ pounds $=231$ cubic inches
Bushel $=8$ gallons $=04$ pounds $=1848$ cubic inches
Quarter $=8$ bushels $=512$ pounds $=14784$ cubic inches.
Chaldron $=4$ quarters $=118272$ cubic inches.
Reputed Winchester and other measures, sometimes heaped.
Old Winchester corn gallon stricken $=268.8$ cubic inches

$$
\# \quad \text { bushel } \quad \# \quad=2150^{\circ} 4 \text { chaldron }=36 \text { Winchester bushels stricken }
$$

Elizabethan ale gallon $=282$ cubic inches
$\left.\begin{array}{l}\text { Revived ancient measures } \\ \text { Queen Annian wine gallon }\end{array}\right\}$ (London measure) $=23$ I cubic inches coal bushel $=33$ wine quarts $=2218.48$ cubic inches
Modern Winchester gallon of William III. $=272 \frac{1}{4} \quad$,
bushel $=60 \mathrm{lbs}$. of wheat $=2150.42$ ",
Imperial gallon of $\mathrm{I} 824={ }^{2} 77^{\circ} 274$
Weight-units.
Anglo-Saxon marc $=8$ ounces $=160$ pence $=5120$ grains
Moneyers' pound $=1 \frac{1}{2}$ marc $=12 \mathrm{oz} .=20$ sh. $=240$ pence $=7680$ grs.
Merchants' pound $=15$ oz. $=25$ shillings $=9600$ grains.
Commercial pound $=2$ marcs $=16$ ounces $=10240$ grains
Foreigners' pound (Dutch weight) $=16$ foreign oz. $=256$ for. drms.
Troy pound $=12$ troy ounces $=240$ pennyweights $=5760$ troy grains, used for bread till 1709 .
Avoirdupois pound $=16$ avoirdupois oz. $=7680$ avoirdupois grains ;

. . . . $\quad . \quad$ ○I 70 gallon 1589 till $1824 . \quad 4.6169$ litres. . . . 0.833^{I} gallon $\} \quad 1707$ till 1824.$\} 3.784 \mathrm{I}$ litres. heaped to $\quad 2815$ cub. in. $\quad 1713$ till 1824 . 36.32 to 46.09 i.
 . . . I. gallon retained 4.5417 litres.
 see Chapter VI.

Present English Commercial Measures at 62° Fahr.

[^15]with their Decimal Scientific Equivalents at 32 $3^{\circ} .^{1}$

Commercial Units	Dec. Scientific Equivalent
Quart . $=69.318$ cubic inches	$40 \cdot 101515$ fl. ounces
Pottle . $=2$ quarts	80.20303 fl. ounces
Gallon . $=2$ pottles	$160 \cdot 40606$ fl. ounces
Peck . . $=2$ gallons	320-812 12 fl. ounces
Bushel . $=4$ pecks $=\mathrm{r} \cdot 2837$ cub. ft.	$1 \cdot 283248$ cub. foot
Strike. . $=2$ bushels	$2 \cdot 566497$ cub. feet
Coom . $=2$ strikes	$5 \cdot 132994$ cub. feet
Quarter . $=2$ cooms $=10 \cdot 2696 \mathrm{c} . \mathrm{ft}$. .	10.2659878 c. feet
Chaldron . $=4 \frac{1}{2}$ quarters	46.1969451 c. feet
Gallon .. $=277: 274$ cubic inches	$160 \cdot 40606$ fl. ounces
Firkin . $=9$ gallons $=1.444 \mathrm{I}$ c. ft.	1.44365454 c . foot
Kilderkin . $=2$ frkins	$2 \cdot 887309$ cub. feet
Barrel . $=2$ kilderkins $=5^{\circ} 7766 \mathrm{c} . \mathrm{ft}$.	$5 \cdot 774618$ cub. feet
Hogshead . $=1 \frac{1}{2}$ barrel $=8.6649 \mathrm{c} . \mathrm{ft}$.	8.661927 cub. feet
Butt . . $=2$ hogsheads	17.323 854 cub. feet
Tun . . $=2$ butts $=34.6596 \mathrm{c}$. ft.	34.647709 cub. feet
Inch-weight $=\left\{\begin{array}{c}252.458 \mathrm{grs} \text {. } \\ 0.57705 \mathrm{oz} .\end{array}\right.$	0.5777445 ounce
Foot-weight $=62.32 \mathrm{I}$ pounds .	0.9983425 foot-wt.
Yard-weight $=15.0238 \mathrm{cwt}$.	26.9552475 foot-wt.
Grain	2.288478 mils
Com. drachm $=27.34375$ grs.	62.57555 mils
Med. drachm $=54.6875$ grs.	125.1511 mils
6o-grain drachm	137.308 666 mils
Ounce . $=437 \frac{1}{2}$ grains	$1 \cdot 001209$ ounce
Pound . $=16$ ounces	16.019344 ounces
Stone. . $=14$ pounds	$224 \cdot 27076$ ounces
Quarter . $=2$ stone	448.54152 ounces
Cental : = ioo pounds	$1 \cdot 601934$ foot-wt.
Hundredweight $=112$ pounds	$1 \cdot 7941661$ foot-wt.
Ton . . $=20 \mathrm{cwt}$.	$35 \cdot 883216$ foot-wt.

succeeding chapter (Chapter VI., Part II.).
and weight does not exist in Commercial Units at 62°.

The English Commercial System at normal temp., 62° Fahr.,

Inch	0.2539229 décim.
Foot . . $=12$ inches	0.3047075 mètre
Yard . . $=3$ feet	0.9141225 ,
Fathom $=2$ yards	I.828 2450 ,
Rod . . $=$ so feet	3.047075 mètres
Pole . . $=5 \frac{1}{2}$ yards	5.0276738 ,
Chain (Gunter's) $=4$ poles	20'ı10 695 ",
Chain (Ramsden's) $=100$ feet	30.470750 ",
Furlong . $=40$ poles	201 '106 950
Mile . . $=8$ furlongs	I 6088556 kilom.
Square inch .	0.0644768 déc. carr.
Square foot . $=144$ square inches	000928467 mèt. carr.
Square yard. $=9$ square feet	0.8356199 ",
Square rod . $=$ го0 square feet	9.284666 r (,
Sq. pole $\quad=30 \frac{1}{4}$ square yards	25.2773350 ,"
Sq. chain (Gunter's) $=16$ sq. poles	4.0444005 ares
Sq. chain (Ramsden's) $=$ roo sq. rods	9*284666ı ,
Rood . . $=40 \mathrm{sq}$. poles .	Io'ili OOI3
Acre . . $=4$ roods	0.404440 I hectare
Square furlong $=10$ acres	4.0444005 hectares
Square mile . $=64$ square furlongs	2.5884163 kil. carr.
Cubic inch	16.372 1492 cent. cub.
Cubic foot . $=17.28$ cubic inches	28.2910738 déc. cub.
Cubic yard . $=27$ cubic feet	0.7638590 mèt. cub.
Minim. . $=\frac{1}{480}$ of a fluid ounce	0.05914 millilitre
Liquid grain $=\frac{1}{7000}$ of a gallon	$0 \cdot 06488$, ,
Fluid drachm $=60$ minims .	3.54823 millilitres
Fluid ounce. $=8$ fluid drachms	28.38587
Gill . $\quad=5$ fluid ounces	$0 \cdot 141929$ litre
Pint , . $=4$ gills.	0.567717 ,
Bottle . $\quad=\quad 1 \frac{1}{3}$ pint	0.756956 ,

For connecting values of Measures of Capacity, Cubic For English Scientific Values at 32° Fahrenheit,
ch. i. EUROPEAN COMMERCIAL SYSTEMS.
with French Commercial Equivalents at 32° Fahr.

Quart . . $=2$ pints	I•35 435 litre
Pottle . . = 2 quarts	$2 \cdot 270869$ litres
Gallon. . $=2$ pottles	4.54 I 739
Peck . . $=2$ gallons	9.083477
Bushel . $=4$ pecks	36.333909
Strike . . $=2$ bushels	72.667818
Coom . . $=2$ strikes	1.453 356 hectolitre
Quarter . = 2 cooms	2.906713 hectolitres
Chaldron . $=4^{\frac{1}{2}}$ quarters .	13.080207 "
Last . . $=$ ıо quarters	$29^{\circ} 067127$ "
Gallon.	$4{ }^{\circ} 54739$ litres
Firkin . . $=9$ gallons	40.875647 "
Kilderkin . $=2$ firkins	8r.751295
Barrel . . $=2$ kilderkins	1.635026 hectolitre
Hogshead . $=1 \frac{1}{2}$ barrel	2.452539 hectolitres
Butt . . $=2$ hogsheads	4.905078 ",
Tun . . $=2$ butts	$9 \cdot 810155$
Inch-weight	16.358998 grammes
Foot-weight $=1728$ inch-weight	28.268349 kilogrammes
Yard-weight $=27$ foot-weight	7632454 quintals
Grain . . $=\frac{1}{7000}$ of a pound	-0664 7989 gramme
Commercial drachm $=27.344$ grains	17771846
Medical drachm $=54.69$ grains	3×543693 grammes
60 -grain drachm $=60$ grains	3.887937
Ounce. . $=16$ com. drachms	28.34954
Pound. . $=16$ ounces	0453593 kilogramme
Stone . . $=14$ pounds	6.350297 kilogrammes
Quarter . $=2$ stone	$12 \% 00594$,
Cental. $\quad=100$ pounds	0.453593 quintal
Hundredweight $=4$ quarters $\cdot{ }^{\text {a }}$	
Ton . . $=20$ hundredweight	ror 6048 millier

[^16]| | | Conversion Ta | r reducing Engl |
| :---: | :---: | :---: | :---: |
| Units. | Inches into décim. | Feet into mètres. | Yards into mètres. |
| I | 0.253923 | 0.304708 | 0.914 I 23 |
| 2 | 0.507846 | 0.609415 | 1-828 245 |
| 3 | 0.761769 | 0.914123 | 2.742368 |
| 4 | rois 692 | I 218830 | 3.656490 |
| 5 | I. 269615 | I.523538 | 4.570613 |
| 6 | 1.523537 | 1.828245 | 5.484735 |
| 7 | 1.777460 | 2.I32953 | 6.398858 |
| 8 | 2.031383 | 2.437660 | 7.312980 |
| 9 | 2.285306 | 2.742369 | $8 \cdot 227103$ |
| IO | 2.539229 | 3.047 075 | 9.141225 |

Sq. in. into décim. carr. Sq. ft. into mètres carr. Sq. yds. into mètres carr.

\mathbf{I}	0.064477	0.092847	0.835620
2	0.128954	0.185693	1.67 I 240
3	0.193420	0.278540	2.506860
4	0.257907	0.37 I 387	3.342480
5	0.322384	0.464234	4.178 I 00
$\mathbf{6}$	0.38686 I	0.557080	5.0 I 3720
7	0.45 I 338	0.649927	5.849339
8	0.5 I 58 I 4	0.742774	6.684959
9	0.58029 I	0.835620	7.520579
$\mathbf{1 0}$	0.644768	0.928467	8.356 I 99

Cub. in. into litres.
-0.016 372
0.032744
0.049 II6
0.065488
0.081860
0.098232
0.114605

○•130 977

- 147349
0.16372 I

Cub. feet into litres.
28.29107
56.582 I 5
84.87322

II3'16430
141.45537

ェ69•74644
198.03752
226.32859
254.61967

282 910 74

Gallons into litres.
4.54I 739
9.083477
13.625 216
18.166 954
$22 \cdot 708693$
27.250433

31'792 170
36.333909
$40 \cdot 875647$
45.417386

Commercial Measure into French Measure.

Units	Miles into kilom.	Grains into Grammes.
1	r.608856	- 064799
2	3.217711	-'129 598
3	4.826567	- '194 397
4	6.435422	$\bigcirc \cdot 259196$
5	8.044278	$\bigcirc \cdot 323995$
6	9.653134	$\bigcirc \cdot 388794$
7	II261989	$\bigcirc \cdot 453593$
8	12.870845	$\bigcirc \cdot 518392$
9	14.479700	$\bigcirc \cdot 583191$
I0	16.088556	0.647989

Pounds into kilog.
$0 \div 453593$
0.907186

ェ. 360778
I.814 37 I
$2 \cdot 267964$
2.721556

3'175 149
3.628742
4.082 334

47535927
Bushels into hectolitres. Cwts. into quintals.

I	0.363339	0.508024
2	$0 \cdot 726678$	1016 048
3	1*090 017	1.52407
4	1453 356	2.032095
5	1.816 696	2.540119
6	2.180 035	3.048142
7	2.543374	3.556167
8	2.906713	4.064190
9	3.27005^{2}	4.572254
10	3.633391	5 © 0 - 238

Tons into milliers.

$$
\text { I.OI6 } 048
$$

2.032095
3.048 I43
4.064190

5 .080 238
$6 \cdot 096285$
7 II2 333
8.128380

9'144428
IO•160 475

French Equivalent.	
47*396	millim.
$304 \% 7$,
$710 \cdot 99$	"
$2 \cdot 13297$	mètres
I 06648	kilom.
$9 \cdot 28467$	déc. carr.
$4 \cdot 54949$	met. carr.
I•09188	hectare
$28 \cdot 29087$	déc. cub.
0•1229	litre
I 22288	,
I. 53605	
12.2884	litres
18.433	,
$36 \cdot 8652$	',
2.211912	hectol.
4.9154	"
3.2769	litres
$6 \cdot 5538$,
26.2152	,
$52 \cdot 4304$,
$2 \cdot 09722$	hectol.
33.55552	,
0.04443	gramme
$4 \cdot 2657$	grammes
0.40952	kilog.
16.38068	
1.63807	quintal
$9 \cdot 82841$	quintals
I•96568	millier
0.358323	kilog.

Eng. Scientific Equiv. 0.15551 foot
0.99971 ,
$2 \cdot 33266$ feet
6.99797
0.34990 league
0.99943 sq. foot
48.97207 sq. feet
$11 \cdot 75320$ sq. chains
0.99914 cub. foot
4.33984 fl. ounces
43.39836
54'24783
0.4339884 cub. foot
0.65097
1-30195
7.81171 cub. feet
17.359345 ,
115.729 fl. ounces
231.458
0.92583 cub. foot
1.85166 ,
$7 \cdot 40665$ cub. feet
118.50637 ,
1.56931 mil
$0 \cdot 15065$ ounce
14.46274 ounces
0.57851 ft .-weight
5.78510
34.71057
69.42114 ,
$12 \cdot 65474$ ounces

"HE RUSSIAN SySTEM.

French Equivalent.	
313.85	,
627.70	
I.883 121	mètre
3.128 535	mètres
7.5325	kilom.
$\begin{aligned} & 6 \cdot 840557 \\ & 9 \cdot 850402 \end{aligned}$	cent. car. déc. car.
$39^{\circ} 401608$	
$\begin{aligned} & 3.546 \text { I4 } \\ & 9.850402 \end{aligned}$	mèt. car. ,
I IO3 245	hectare
$2 \cdot 206490$	hectares
$56 \cdot 738314$	klm. car.
17.891 106 cent. cub.	
$30 \cdot 91583 \mathrm{I}$ déc. cub.	
$2 \cdot 225940$ met. cub.	
6.677 819	
$0 \cdot 9661$	litre
I•9322	
3.7437	litres
37.4371	
1.31392	hectol.
1.49749	"
$2 \cdot 24623$,
8.98491	,
17.39015	litres
I $\cdot 39121$	hectol.
$30 \cdot 60667$,

Eng. Scientific Equiv. 0.858092 tithe
1.029710 foot
2.059 420 feet
6.178 261
1.029710 rod
$2 \cdot 471304$ rods
0.73634 sq. tithe
1.060327 sq. foot
4.241 306 sq. feet
38.171754
1 1060 327 sq. rod
11×875659 sq. chns.
23.751319
6.10748 sq. leag.
0.631853 fluid oz.
1.091841 cub. foot
78.61258 cub. feet
235.83774
34.1200 fluid \supset z.
68.2401
$0 \cdot 1322$ cub. foot
1.3222
4.6403 cub. feet
5.2886
7.93229
31.7316
0.61416 cub. foot
491329 cub. feet
108.09230

Tile Danish System-(contimued).

Eng. Scientific Equiv.0.97400 foot	French Equivalent. 296.87 millim.	
194800 ,	593.74	,
$5 \cdot 84400$ feet	1.7812	mètre
9.7400	2.9687	mètres
1.55840 rod	4.74987	
$3 \cdot 50640$ leagues	10.6872	kilom.
0.94866 sq. foot	8.81301	déc. carr.
3.79463 sq. feet	$35 \cdot 25203$	
34.15171 ,	3.17268	mèt. car.
94.866	$8 \cdot 81301$, ,
2.42857 sq. rods	22.56130	,
5.31249 sq. chains	$49 \cdot 3528$	ares
12.2945 sq. leagues	144.2162	kilom. car.

THE SWEDISH SYSTEN.

$=$	10 tum		-			Eng. Commercial Equiv. 0.974277 foot
=	2 fot		-			I'948 555 ,
$=$	6 fot					1.948555 yard
$=$	Io fot		-			9.74277 feet
=	16 fot		.			$5 \cdot 196087$ yards
$=$	6000 famn	-	.			$6 \cdot 64273$ miles
=	IOO squar	tum	.			0.949 I99 sq. foot
	4 squar	fot	-			3.796795 sq. feet
	36 squar		-	-		$3 \cdot 796795$ sq. yards
	100 squar	fot	-			94*9199 sq. feet
	256 squar	fot	-			26.9995 ,
	56000 squar	fot				I.22027 acre
	36 millio	squ				$44 \cdot 12585$ sq. miles

$=36$ million square famn

N.B. There were also 4 other lispund and 4 other skippund.
NORTH GERMAN SYSTEMS. No. I. Prussia.

Frerch Equivalent.	
313.85	millim.
376.624	,'
$666 \cdot 90$,
1.8831	mètre
2.0923	mètres
$3 \cdot 7662$	
$7 \cdot 5325$	kilom.
74089	"
$\begin{aligned} & 9 \cdot 85040 \text { déc. carr. } \\ & 14 \cdot 18458 \text {,, } \end{aligned}$	
3.546 I	mètres carr
14.18458	,
25.5322	ares
56.7383	kilom. carr.
17.89111	cent. cub.
30.91583	déc. cub.
$6 \cdot 67782$	mèt. cub.
3.33891	,
15.02509	,
I 145	litre
$68 \cdot 70$	litres
I•374	hectol.
$8 \cdot 244$,
3.435	litres
54.96	
6.5954	hectol.
39.572	,'
$2 \cdot 1641$	"

0.51618 ounce	14.616	grammes
8.25896 ounces	$233 \cdot 85$	"
16.51792 ,	467.71	",
0.27255 ft . weight	$7 \cdot 7152$	kilog.
0.36339 ,	10.2896	,
1×1697,	51*4481	,
5.45091 ,	I 54.344	,
33.03583	0.93542	millier
66.07166	I 87084	,
65.41095 ,	I.85213	"

0.51556 ounce
0.51556 pound
$1.03112, "$
17.01353 pounds
$22.6847 \mathrm{I},$,
1.01271 cwt.
$3.03813,$,
0.92065 ton
$1.84129,$,
$1.82288,$,

North German Systems. No. II. Hamburg-(continued).

NORTH GERMAN SYSTEMS. No. III. Bremen.

Bremen fuss $\quad=\mathbf{1 2}$ zoll or $=10$ dec. zoll	Eng. Commercial Equiv. 0.94909 foot	Eng. Scientific Equiv. 0.94882 foot	French Equivalent. 289.20 millim.
,, elle . $=2$ fuss	I.89818 feet	$1 \cdot 89764$ feet	578.39
klafter . $=6$ fuss	I.89818 yar	$5 \cdot 69292$,	$1 \cdot 7352$
ruthe . $=16$ fuss	5.06185 yard	1.51811 rod	4.62716
Postmeile (Danis	$4 \cdot 68190$ miles	$2 \cdot 47130$ leagu	$7 \cdot 5325$ kilom.
Quadratfuss $\quad=\left\{\begin{array}{c}144 \text { quad. zoll }=100 \text { quad. } \\ \text { dec. zoll }\end{array}\right.$.	0.90079 square foot	$0 \cdot 90027$ square ft.	$8 \cdot 3635 \mathrm{I}$ déc. carr.
Quadratklafter . = 36 quad. fuss . . .	3.60314 square yards	32-40980	3.01086 mèt. carr.
Quadratruthe . $=256$	25.62239 ,	2.30470 sq. rods	21.41058
Morgen . . $=120$ quad. ruthen .	$2 \cdot 54106$ roods	$2 \cdot 76564$ sq. chains	25.6927 ares
Quadratmeile	21.92006 square miles	6.10748 sq. leagues	56.7383 kilom. carr.
Kubikzoll	0.85494 cub. inch	0.49822 fl. ounce	13.99713 cent. cub
Decimal kubikzoll	1.47733 cub . inches	0.85420	$24 \cdot 18704$
Kubikfuss . $=1728$ or 1000 kub. zoll	0.85494 cubic foot	0.85420 cub. foot	$24 \cdot 18704$ déc. cub.
Kubikklafter . $=216$ kub. fuss	6.84348 cub . yards	184.508 cub. feet	5.2244 mèt. cub.
Holzfaden . $=72$	$2 \cdot 28116$	61.	I 74147 mèt. cub
Stübchen . . $=4$ quarts	2.8442 quarts	113.649 fl. ounces	$3 \cdot 2180$ litres
Anker . . $=1$ I $\frac{1}{4}$ stübchen	7.9705 gallons	$1 \cdot 27846$ cub. foot	$36 \cdot 20$
Ahm. . . $=4$ anker	31.882	$5 \cdot 11384$ cub. feet	${ }_{8} \mathrm{I} .448 \mathrm{I}$ I hecto
Fuder . . $=40$ oxhoft $=6$ ahme	191.292	$30 \cdot 68304$	8.688
Spint	1.0193 gallon	163.894 fl. ounce	4.63 litres
Scheffel . . $=16$ spint	2.0386 bushels	$2 \cdot 61590 \mathrm{cub}$. feet	74.07
Danish corn-barrel $=4 \frac{1}{2}$ kub. Rheinfuss	3.8287	4.91289	I.3911 hectol.
Korn last . . $=40$ scheffeln .	10.193 quarters	104.636	29.628
Loth . . . $=4$ quentchen $=16$ ort	0.54923 ounce	$0 \cdot 54989$ ounce	15.57 gramm
Pfund . . $=2$ mark $=16$ unzen $=32$ loth	I.09845 ",	17.59649 ounces	$498 \cdot 25$
Liespfund . . = $14 \frac{1}{2}$ pfund .	15.92756 pounds	0.25515 ft -weight	7.2246 kilog.
Stein . . $=20$,	$2 \mathrm{I} \cdot 96905$,	$0 \cdot 35193$,"	9.965
Centner . . $=116$	I•13768 cwt.	$2 \cdot 04119$	57 797
Schiffpfund . $=2 \frac{1}{2}$ centner	2.84421	$5 \cdot 10298$	144.4925
Frachtpfund . $=300$ pfund	2.94228 ,	$5 \cdot 27895$	149.475
Last of heavy goods $=4000$ pfund	1.96152 ton	70.38594	I 993 millier

NORTH GERMAN SYSTEMS. No. IV. Dresden.

NORTH GERMAN SYSTEMS. No. V. Leipzig.

NORTH GERMAN SYSTEMS. No. VI. Brunswick.

$\begin{aligned} & \text { French E } \\ & 285 \cdot 36 \end{aligned}$	Equivalent. millim.
570.72	
4.5658	mètres
7.5325	kilom.
$\begin{aligned} & 565498 \\ & 8 \cdot 14317 \end{aligned}$	cent. carr. déc. carr.
$20 \cdot 84651$	mèt. carr.
$25 \cdot 0158$	ares
$56 \cdot 7383$	kilom. carr.
13.447	cent. cub.
23.236	déc. cub.
$2 \cdot 9958$	mèt. cub.
3.676	litres
$36 \cdot 762$,"
I. 4705	hectol.
$8 \cdot 823$,
7.775	litres
31*10	,
$3 \cdot 1103$	hectol.
31.103	,
14.60	grammes
$233 \cdot 65$,
$467 \cdot 3$, ,
$6 \cdot 5422$	kilog.
9.3460	,
53.2722	,
$130 \cdot 84$,,

NORTH GERMAN SYSTEMS. No. VII. Hanover.

NORTH GERMAN SYSTEMS. No. VIII. Gotha.

NORTH GERMAN SYSTEMS. No. IX. Oldenburg.

NORTH GERMAN SYSTEMS. No. X. Mecklenburg.

French	
Equivalent.	
291.0	millim.
572.98	,
4.65603	mètres
7.5325	kilom.
8.4682 I déc. carr.	

$8 \cdot 4682$ I déc. carr. $21 \cdot 67863$ mèt. carr.
$21 \cdot 67863$ ares $86 \cdot 7145$ hectares
$56 \cdot 7383$ kil. carr. 14.26052 cent. cub.
24.64217 déc. cub.
2.33858 mèt. cub. 2.33858 met. cub.
3.620 litres $\begin{array}{cc}36 \cdot 20 & ,, \\ \text { I.4481 } & \text { hectol. } \\ 8.688 \quad,\end{array}$

Faust
Fuss
Elle
Klafter
Postmeile Quadratfuss Quadratfuss
Quadratklafte Joch
Quadratmeile Quadratmeile
Kubikzoll A cimal kubikzoll

\| \| \| \| \| \| \| \| \|

SOUTH GERMAN SYSTEMS. No. 11. Bavaria. ${ }^{1}$
French Equivalent.
2.43216 centim.
0.29186 mètre
1.75116,
2.91859 mètres
3.70749 kilom.
8.51818 déc. carr.
3.06655 mèt. carr.
8.51818 ",
34.07271 ares

0.50811 fl. ounce 0.87801 ,	$\begin{aligned} & \text { I4.3872 cent. cub. } \\ & 24.86 \mathrm{IO} 8 \text { ", } \end{aligned}$
0.87801 cub. foot	24.86108 déc. cub.
$\begin{array}{cc} 110 \cdot 629 & \text { cub. feet } \\ 189.650 & ", \end{array}$	$\begin{aligned} & 3 \cdot 13249 \text { mèt. cub. } \\ & 5 \cdot 36999 \text { ", } \end{aligned}$
37.7545 fl. ounces	1.0690 litre
$2 \cdot 26527$ cub. feet	$64 \cdot 1418$ litres
2.41629	68.4177
$40 \cdot 901$ fl. ounces	I.158i litre
163.602 ,	4.6325 litres
$1 \cdot 30882$ cub. foot	37.0596 ,
7.85291 cub. feet	2.2236 hectol.
$\begin{gathered} 7.2715 \mathrm{mils} \\ 123.2682 \mathrm{M}, \end{gathered}$	0.20589 gramme 3.49038 grammes
$0 \cdot 61804$ ounce	17.5
9.88864 ounces	0.280 kilog.
19.77729 ,	$0 \cdot 560$ "
${ }^{12} \mathbf{2} 71397$,	$0 \cdot 360$,
0.39555 ft.-weight	11.2
1-97773 -,	560

SOUTH GERMAN SYSTEMS. No. III. Würtemberg, ${ }^{1}$ since 1806 .

THE SPANISH SYSTEM. Castilian Measures.

Pie castillan $=12$ pulgadas $=16$ dedos .	Eng. Commercial Equiv. 0.913432 foot	Eng. Scientific Equiv. 0.91318 foot	Metric Equivalent. $278 \cdot 33$ millim.
Codo or dinario $=1 \frac{1}{2}$ pie .	1.370148 , ,	1-36978 ,	417.50 ,
Codo de ribera $=2$ pies .	I-826863	1.82637	$556 \cdot 67$
Vara . $=3$,	$0 \cdot 913432$ yard	$2 \cdot 73955$ feet	0.835 mètre
Braza o estado $=6$	I-826863	5.47910	1.670
Estadal . $=12$	3.653727 yards	1.09582 rod	3.340 mètres
Estadio . $=625$, $=125$ pasos	0.865025 furlong	$5 \cdot 70740$ chains	173.9583
Milla . . $=5000,=\mathbf{1 0 0 0}$,	0.865025 mile	0.45659 league	1.3917 kilom.
Pie cuadrado. $=144$ pulgadas cuad.	0.834381 sq	0.83390 sq. foot	7.74694 déc. carr.
Vara cuadrada $=9$ pies cuad.	0.834381 sq. yard	7.50514 sq. feet	o.69723 mèt. carr.
Estadal . $=16$ varas cuad.	13.350096 sq. yards	$1 \cdot 20082$ sq. rod	I I 1556
Celemin . $=\left\{\begin{array}{c}48 \text { estadales cuad. }=768 \text { var. } \\ \text { cuad. }\end{array}\right\}$	0.52959 rood	57.6395 sq. rods	$5 \cdot 35469$ ares
Fanegada Yugada	$\begin{aligned} \text { I.58877 } & \text { acre } \\ 78.4385 & \text { acres }\end{aligned}$	6.91674 sq. chains	64.2563 $32.12813 ~, ~$
Yugada $=50$ fanega	$78 \cdot 4385$		$2 \cdot 12813$ hectare
Pulgada cubica Pie cubico. = 1728 pulgadas cubicas	0.762160 cub. inch	0.44069 fl . ounce 0.76151 cub . foot	12.47820 cent. cub. $21 \cdot 56233$ déc. cub.
Vara cubica . $=27$ pies cubicos	0.762160 cub. yard	20.91388 cub. feet	0.58218 mèt. cub.
Azumbre	1.7765 quart	71.238 fl. ounces	2017 litres
Cantara o arroba mayor $=8$ azumbres	3.553I gallons	0.56990 cub. foot	16.137
Pipa vino . $=27$ arrobas mayores	95.9324	15.38740 cub. feet	4.3570 hectol.
Bota vino $\quad=30$	106.5915	17.09711	$4 \cdot 8411$
A Arroba menor of oil	2.7663 ,	0.44372 cub. foot	12.564 litres
Pipa of oil $=34 \frac{1}{2}$ arrobas	95*441	15.30867 cub. feet	4.3347 hectol.
Bota , $=38 \frac{1}{2}$	106.508	17.08368	4.8373 ,,
Tonelada vino $=2$ botas (or 60 arrobas)	213.183	34-1942	$9 \cdot 682$
Almude or celemin $=16$ ochavos	I 0055 gallon	$161 \cdot 291$ fl, ounces	4.567 litres

The Spanish System. Castilian Measures-(continued).

Fanega . $\quad=\quad \mathrm{I} 2$ almudes . $\quad=\mathrm{I} 2$ fanegas . . . Cahiz	Eng. Commercial Equiv. I.5082 bushel $2 \cdot 2623$ quarters	Eng. Scientific Equiv. $1 \cdot 93549$ cub. foot $23 \cdot 22588$ cub. feet	$\begin{gathered} \text { Metric } \\ 54.80 \\ 6.576 \end{gathered}$	quivalent. litres hectol.
$\begin{aligned} & \text { Dracma }=3 \text { escrupulos }=6 \text { obolos }=72 \text { granos } . \\ & \text { Ochava }=\left\{\begin{array}{c} 2 \text { adarmes o arienzos }=6 \text { tomines }=18 \\ \text { caracters } . \end{array}\right. \end{aligned}$	55.46001 grains	126.919 mil	3.5938	grammes
Marc (med. and mon.) $=\left\{\begin{array}{r}8 \text { onzas }=32 \text { quartos }=64 \\ \text { ochavas o dracmas }\end{array}\right\}$	0.507063 pound	8-12281 ounces	0.230	kilog.
Libra . . $=2$ marcos $=16$ onzas . .	I.014126 ,,	16.24563	$0 \cdot 460$	
Arroba . . $=25$ libras	$25 \cdot 353145$ pounds	$0 \cdot 40614 \mathrm{ft}$ - weight	II 5	
Quintal - = 100	$0 \cdot 905470$ cwt.	$1 \cdot 62456$,,	46	
Tonelada $\quad=20$ quintals	0.905470 ton	32.49126 ,	0.920	millier

THE PORTUGUESE SYSTEM. Lisbon Measures.

```
Metric Equivalent.
    | Eng. Commercial Equiv. \(\mid\) Eng. Scientific Equiv.
        \begin{tabular}{l|l} 
I.083004 foot & \(1 \cdot 08270\) foot
\end{tabular}
        \(2 \cdot 166008\) feet \(\quad 2 \cdot 16539\) feet
        I.203337 yard
```



```
        II II
        Pé \(\quad\).
Covado
Vara
```

$5 \cdot 41348$,,	1.650	
7.21798 ,	$2 \cdot 200$	mètres
0.67521 league	$2 \cdot 0580$	kilom.
$2 \cdot 02563$ leagues	$6 \cdot 1741$	"
$1 \cdot 17223$ sq. foot	10.890	déc. carr.
13.02480 sq. feet	1.210	mèt. carr.
6.30400 sq. chains	$58 \cdot 564$	ares
0.73447 fl. ounce	$20 \cdot 796881$	cent. cub.
1.26917 cub. foot	$35 \cdot 937$	déc. cub.
47.00637 cub. feet	1.3310	mèt. cub.
48.678 fl. ounces	$1 \cdot 38$	litre
0.58414 cub. foot	16.54	litres
$15 \cdot 18754$ cub. feet	$4 \cdot 3013$	hectol.
30.37509 ,	8.603	,
0.47748 cub. foot	13.52	litres
1.90992 , ,	54.08	
28.64881 cub . feet	$8 \cdot 1123$	hect
126.091 mils	3.5703	grammes
$8 \cdot 10515$ ounces	229.5	,"
16.21031 ,	$459{ }^{\circ}$	
0.51873 ft .-weight	14.688	kilog.
2.07492	58.752	
28:01142 ,	0.79315	millier

THE OLD PARISIAN MEASURES used till 1812 (also used in Quebec 'ill 1870).

$\begin{aligned} & \text { Eng. Scientific Equiv. } \\ & 0.08881 \text { foot } \\ & 1.06577 \text {,, } \\ & 1.918388 \text { rod } \\ & 1.918183 \text { chain } \\ & \text { 6.39461 feet } \\ & 0.63946 \text { league } \end{aligned}$	Metric Equivalent. 27.0699 millim. 324.839 $5 \cdot 84711$ mètres 58.47109 I 94904 mètre I •94904 kilom.
1 p 13588 sq. foot	- 10552 mèt.
$40: 89096$ sq. feet	379876
3.68020 sq. rods	$34 \cdot 1887$
3.68020 sq. chains	0.34189 hectare
$5 \cdot 49755$ sq. rods	51.072 mèt. carr.
$5 \cdot 49755$ sq. chains	0.51072 hectare
0.70055 fl . ounce 1.21055 cub. foot	19. 83638 cent. 0.03428 mèt.
$67 \cdot 79124$ cub. feet	I.91953 ,,
$261 \cdot 481$	$7 \cdot 4039$
65.78 fl. ounces	I.8626 litre
263.14	7.45 litr
3.15766 cub. feet	89.41
9•47298	2.6822 hectol.
14.20947	4•1092 ,
$459 \cdot 41$ fl. ounces	13.008 litres
1.37823 cub . foot	39.025
$5 \cdot 5129$ cub. feet	${ }_{1} \cdot 56 \mathrm{Io}$ hecto
66.154	18.7319 ,
135.06 mils	3.82426 grammes
1 108048 ounce	$30 \cdot 59$
17.28768 ounces	489.506
1.72877 ft .-weight	48.95 kilog.
$5 \cdot 18631 \mathrm{ft}$--weights	I 4685 quint.
34:57536	0.97901 millier

N.B. The old French measures would fill several volumes : the land measures being excessively numerous.
THE OLD AMSTERDAM MEASURES. Before 1817 .

French	Equivalent.
25.74	millim.
$283 \cdot 1$,
687.8	"
I 6986	metre
$3 \cdot 6084$	mètres
$5 \cdot 6621$	kilom.
$5 \cdot 5567$	"
8.0149	déc. carr.
13.5452	met. carr.
$40 \cdot 6357$	
8I.2714	,
17.0479	cent. cub.

THE OLD BRUSSELS MEASURES.

French 25.07	Equivalent. millim.
275.75	,,
$695 \cdot 64$	
$4 \cdot 50392$	mètres
5.5150	
$5 \cdot 5150$	kilom.
$7 \cdot 603$	éc.

$20 \cdot 28527$ mèt. carr.
$20 \cdot 28527$ ares
$81 \cdot 1411 \quad$,
15.75319 cent. cub. 20.96750 déc. cub.
$\begin{array}{ll}\mathbf{I} \cdot 3544 & \text { litre } \\ \mathbf{2} 7088 & \text { litres } \\ \mathbf{2} \cdot 6004 \quad \text {, } \\ \mathbf{I} 3002 & \text { hectol. }\end{array}$ $\begin{array}{cc}3.047 & \text { litres } \\ 12.19 & , \\ 48.76 & , \\ 2.9255 & \text { hectol. }\end{array}$

$$
492 \cdot 16 \quad,
$$

Duim . . $=4 \mathrm{kwart}=8$ achtendeel	Eng. Commercial Equiv. 0.987234 inch	Eng. Scientific Equiv. 0.08225 foot
Voet . . $=$ II duimen	. 904965 foot	$0 \cdot 90471$
El . . $=16$ talien	$2 \cdot 282972$ feet	$2 \cdot 28233$ feet
Roed . . $=16 \frac{1}{3}$ voeten	4.927030 yards	1.47769 rod
Roed or verge $=20$	18.099294 feet	$1 \cdot 80952$,
Uer . . $=1000$ roede or verges ((20.15 to 1°)	3.427904 miles	†80942 league
ierkante voet $=\mathbf{1 2 1}$ vierkante duimen .	0.818963 sq. foot	0.81850 sq. foot
Vierkante roed $=266 \frac{7}{9}$ vierkante voeten	24.27569 sq. yards	$2 \cdot 18357$ sq. rods
Dagwand $=100$ vierkante roede	$2 \cdot 006255$ roods	$2 \cdot 18357$ sq. chains
Bunder . $=4$ dagwand	$2 \cdot 006255$ acres	8.73428
ubieke duim	62194 cub. inch	0.55635 fl. ounce
ubieke voet $=1331$ kubieke duimen	0.741133 cub. foot	740
Wine pot $\cdot=2$ pints $=4$ uperken $=64$ onsen .	I.1928 quart	47.8328 fl. ounces
Gelte or lot $=2$ wine pots $=3$ gemet	$2 \cdot 3857$ quarts	
Stoop . . $\quad=\left\{\begin{array}{c}2 \text { beer pots }=4 \\ \text { glazen beer pints }=32\end{array}\right\}$	$2 \cdot 2902$	91'8372
$\left.\begin{array}{r} \text { Aem . } \quad=\quad 24 \text { schreef }=48 \text { geltes }=50 \text { stoop- }\} \\ \text { en }=100 \text { beer pots } . \end{array}\right\}$	$28 \cdot 6278$ gallons	5919 cub. feet
cotin $\quad=\left\{\begin{array}{c}\text { I } \frac{1}{8} \text { lots }=1 \frac{1}{4} \text { molevat }=4 \frac{1}{2} \text { pots } \\ \text { (walloon) }\end{array}\right\}$	2.6840 quarts	107.63 fl. ounces
Viertel . $=2$ half-viertel $=4$ picotin . .	2.6840 gallons	$430 \cdot 51$
Rasière . $=2$ halsters $=4$ vierteln	$1 \cdot 3420$ bushel	$1 \cdot 72204$ cub. foot
Muid . . $=6$ rasières	I•0065 quarter	10.33222 cub. feet
Shop pound $=4$ quarterons $=16$ onsen $=64\}$ satins $=\mathbf{1 2 8}$ gros $=9216 \mathrm{gr}$. $\}$	1.03rior pound	17.22037 ounces
Troy pound $\left.=\begin{array}{c}2 \mathrm{mark}=16 \text { onsen }=320 \text { esterlins } \\ =1280 \text { felines }=10240 \text { as }\end{array}\right\}$	1.085026 ,	17-38130
Steen . $=8$ pond	8.248810 pounds	$137 \cdot 763$
Centenaar . $=100$ pond	0.920626 cwt.	1.7220 ft.-weight
Poose (coal) $=144$ ponden	1.48469 cwt .	$2 \cdot 4797 \mathrm{ft}$--weights

$$
\begin{aligned}
& 3.7416 \text { kilog. } \\
& 46.77
\end{aligned}
$$

$$
\begin{aligned}
& 40 \cdot 77 \\
& 0.67349 \text { quint. }
\end{aligned}
$$

N.B. The land measures, roed and bunder, of the Netherlands varied in value in almost every district and parish.

THE OLD FLORENTINE MEASURES.
Eng. Commercial Equiv.

Eng. Scientific Equiv.	French Eq	uivalent.
0.95737 foot	$0 \cdot 2918$	mètre
1.91473	0.5836	,
2.82947 feet	I•1672	,'
5.74420	1 7508	,
7.65893	$2 \cdot 2344$	mètres
9.57366 ,	2.9180	,
$1 \cdot 148840$ rod	3.5016	,
0.54250 league	1.6535	kilom.
0.91655 sq. foot	8.414724	déc. carr.
3.66619 sq. feet	$0 \cdot 340589$	mèt. carr.
91.6548 ,	8.514724	,
60.4924 sq. rods	5.61972	ares
6.0492 sq. chains	$56 \cdot 1972$,
0.87657 cub. foot	$24 \cdot 82043$	déc. cub.
20.1216 fl. ounces	0.5697	litre
$80 \cdot 4865$	$2 \cdot 279$	litres
$1 \cdot 6097$ cub. foot	$45 \cdot 58$,,
18.444 fl. ounces	$0 \cdot 522$	litre
73.776 ,	2.089	litres
$1 \cdot 1805$ cub. foot	33.43	,
2.3609 cub. feet	$66 \cdot 85$,'
26.885 fl. ounces	0.761	litre
215.078 ,	6.091	litres
0.86031 cub. foot	24.36	,
$2 \cdot 58094$ cub. feet	$73 \cdot 08$	
51.6187 ,	14.62	hectol.
124.914 mils	3.537	grammes
11.9918 ounces	339.55	,'
$1 \cdot 19918$ ft.-weight	33.95	kilog.
$1 \cdot 79876$	50:93	,,
11.99175 ft.-weights	339:5	,

THE OLD VENETIAN MEASURES. ${ }^{1}$ Still used in the Levant.

French E	Equivalent.
3474	millim.
$638 \cdot 7$	"
683.4	"
I•5648	mètre
1.7387	,
$2 \cdot 0864$	mètres
$1 \cdot 7387$	kilom.
12.06868	déc. carr.
2.4439	mèt. carr.
3.01717	"
4.3447	"
27.8062	ares
30.1717	"
41.92658	déc. cub.
$2 \cdot 70$	litres
$64 \cdot 80$	
$5 \cdot 184$	hectol.
15.312	litres
$6 \cdot 125$	hectol.
$20 \cdot 828$	litres
83.312	
$3 \cdot 3325$	hectol.
4.185	grammes
$0 \cdot 3013$	kilog.
$30 \cdot 13$	
I 2052	quint.
$6 \cdot 626$	grammes
0.4771	kilog.
47.71	"
477 '05	"

1-29911 sq. foot 26.30949 sq. feet
$32 \cdot 47778$ 46.76800
$\begin{aligned} & 4 b^{\prime} / 6800 \\ & 2.99315 \\ & 3 \cdot 24778 \end{aligned} \text { sq.". chains }$
-48070 cub. foot
$95 \cdot 35$ f. ounces $2 \cdot 28851$ cub. feet $18: 30811$
0.54079 cub . foot
0.73558 cub. foot $2 \cdot 94231$ cub. feet
11.76925
$147 \cdot 79$ mils
$10 \cdot 64088$ ounces
$1 \cdot 06409 \mathrm{ft}$-weig
$4 \cdot 2564 \mathrm{ft.-weight}$
16:84777 ounc
$16 \cdot 84777 \mathrm{ft}$-weight

${ }^{1}$ For other old Italian measures, see tables in Part I. giving separate units.

METRIC COMMERCIAL SYSTEMS, or
 SYSTEMS BASED ON THE FRENCH METRE.

N.B.-The units in these systems are employed in commerce at any temperature, without reduction for expansion. The standard temperature is 0° centigrade in vacuo.

No. I. THE PRESENT

Used in France as a Commercial System since 1840.

Units.	Multiples.	Eng. Commercial Equiv.
Millimètre	-001 mètre	0.039382 inch
Centimètre	$\bigcirc \cdot 1$	$\bigcirc \cdot 393820$,
Décimètre	$\bigcirc \cdot 1$	$\bigcirc \cdot 328183$ foot
Mètre	1 . ${ }^{\text {a }}$	r.093 943 yard
Décamètre.	ı mètres	I. 988987 pole
Hectomètre	100	$0 \cdot 497248$ furlong
Kilomètre	1000	0.621560 mile
Centimètre carré.	- .ooor mètre carré	$\bigcirc \cdot 155094$ sq. inch .
Décimètre carré .	\bigcirc - 01	\bigcirc-107 704 sq. foot.
Mètre carré Are.		r.196 716 sq. yard.
Hectare	100 ares .	
Kilomètre carré	100 hectares	0.386336 sq. mile
Centimètre cube.	-00I litre	0.06 I 079 cub. inch
$\left.\begin{array}{l} \text { Decimètre cube } \\ \text { or litre } \end{array}\right\}$	I .	$0 \cdot 220180$ gallon
Hectolitre . .	roo litres.	${ }_{2} 775250$ bushels
$\left.\begin{array}{l} \text { Mètre cube or } \\ \text { stère } \end{array}\right\}$	1000	1.309 140 cub. yard
Milligramme	O.oor gramme	$\bigcirc \cdot 015432$ grain
Gramme .	I . .	15.432349 grains
Kilogramme	1000 grammes .	$2 \cdot 204621$ pounds
Quintal .	100 kilogrammes	r 9684 I 2 cwt .
Millier or tonne	1000 "	0.984206 ton

Metric units are arranged at 0° Centigrade in vacuo both for English Commercial Units are at 62° Fahr. in air, bar. 30 inches, English Scientific Units are arranged at \circ° Centigrade in vacuo, N.B. Some of the nominal metric units, being mere terms for

FRENCH METRIC SYSTEM.

Also adopted by other nations at various dates. See text.

commerce and for scientific purposes. (See Part II., Chapter VI.) at mean sea level. See pp. 282, 283.
for technical and scientific purposes. (See Part II., Chapter VI.) decimal multiples, are omitted in the commercial system.

Conversion Tables for reducing Metric Measures

Units	Decimètres into inches.	Mètres into feet.
$\mathbf{1}$	3.9382	3.28183
$\mathbf{2}$	7.8764	6.56366
$\mathbf{3}$	1.8146	9.84549
$\mathbf{4}$	15.7528	13.12732
$\mathbf{5}$	19.6910	16.40915
$\mathbf{6}$	23.6292	19.69098
$\mathbf{7}$	27.5674	22.9728 I
$\mathbf{8}$	3.5056	26.25464
$\mathbf{9}$	35.4438	29.53647
$\mathbf{1 0}$	39.3820	32.81830

Mètres into yards.
r"09394
2•18789
3.28183
4.37577
5.46972
6.56366
7.65760
8.75155
9.84549

10'93943

Décim. car. into sq. in. Mèt. car. into sq. ft. Mèt. car. into sq. yards.
「ocovocraconr
15.5094
31.0188
$46 \cdot 5283$
62.0377
77.5471
93.0565
108.5659
124.0754

1 39.5848
$155^{\circ} \circ 942$
10.7704
21.5409
32.3 II 3
43.0817
53.8522
64.6226
75.3930
86.1634
96.9339
107.7043
I. 19672
2.39343
3.59015
4.78686
5.9835^{8}
7 18030
8.37701

9•57373
10.77045

11•96716

Litres into cubic inches. Litres into cubic feet.

61•○793
122.1587
183.2380
244.3173
305.3966
366.4759
427.5553
$488 \cdot 6346$
$549^{\circ} 7139$
0.035347
0.070694
0.106041
0.141388
0.176739
0.212082
0.247429
0.282776
0.318123
0.353468

Litres into gallons.
0.22018
0.44036
0.66054
0.88072

I•10090
1.32108

- 54126
- 76144
1.98162
$2 \cdot 20180$
into English Commercial Measures.

Units	Kilomètres into miles.	Grammes into grains.	Kilogrammes into
1	0.62156	15.432349	$35^{\circ} 27394 \mathrm{I}$
2	1.24312	30.864 698	70.547882
3	ı 86468	$46 \cdot 297047$	IO5.82I 823
4	2.48624	6x.729 396	141.095764
5	3.10780	$77 \times 16 \mathrm{x} 745$	176369704
6	3772936	92.594094	211643646
7	4.35092	108.026443	246917587
8	4.97248	123.458792	282*99 528
9	5.59404	ı38.89I I4	317465469
10	6.21560	154.323487	$352 \cdot 739408$

Kilomètres carrés into sq. miles.

1	0.38634
2	0.77267
3	1.15901
4	1.54534
5	1.93168
6	2.31802
7	$2: 70435$
8	3.09069
9	3.47702
10	3.66336

Hectares into acres.
Kilogrammes into lbs.
247255
4.94510

741765
9.89020
12.36275
14.83530
17.30785
19.78040
22.25295

2472550
2.20462 I
4.409242
$6 \cdot 613864$
8.818485
$1 \mathrm{I}^{\circ} 023107$
I3.227728
I5'432 349
I7.636970
19.841 59^{2}
22.046213

Hectolitres into bushels.		
$\mathbf{1}$	2.75225	
$\mathbf{2}$	5.50450	
$\mathbf{3}$	8.25675	
$\mathbf{4}$	11.00900	
$\mathbf{5}$	13.76125	
$\mathbf{6}$	16.51350	
$\mathbf{7}$	19.26575	
$\mathbf{8}$	22.01800	
$\mathbf{9}$	24.77025	
$\mathbf{1 0}$	27.52250	

Quintals into cwt.
I.968412
3.936 824

5905236
7873648
9.842060
II. 8 ro 472
13.778884
15.747296

17715708
19.684120

Y

Milliers into tons.

- 984206
x.968412
2.9526 I8
3.936824
4.921030
5.905236
6.889442
7.873648
$8 \cdot 857854$ 9.842060
METRIC SYSTEMS.
No. 2. The French Mesures usuelles used in France from 1812 to 1840, also adopted in Rhenish Bavaria.

	12 lignes.		-		Eng. Commercial Equiv. I.09394 inch	Eng. Scientific Equiv. 0.91136 tithe	French $27 \because 777$	uivalent. millim.
=	12 pouces	- .	.		I 09394 foot	1.09363 foot	333.333	,
$=$	$3 \cdot 6$ pieds	.	.		I.31273 yard $=$	3.93708 fee	1200	
	6 pieds	. .	.		6.56366 feet	6.56180	2	ètre
	5 toises	. .			10.93943 yards	3.28090 rods	10	
	500 ,	. .	.		0.62156 mile	$0 \cdot 32809$ league	I	ilom
	144 pouces c	arrées	-		r.19671 sq. foot	1.19670 sq. foot	If'iIII	déc. carr.
	36 pieds car	rés	.		$4 \cdot 78686$ sq. yards	43.05720 sq. feet	4	rr
$=$	25 toises ca	rées	.		119.67160 ,	10.76430 sq. rods	I	
	Ioo perches	arrées	.	.	2.47255 acres	10.76430 sq. chains	1	hectare
					1.30914 cub. inc	0.75696 fl. ounce	21.431	cent. cub.
	1728 pouces	bes			$1 \cdot 30914$ cub. foot	1.30802 cub . foot	37.037	déc. cub.
	216 pieds	es $=80$			16.47312 cub. yards	282.5326 cub. feet	8	mèt. cub.
		-			ェ・76144	8.829 fl. ounces	0.25	litre
$=$	4 quarts	$=\frac{1}{8000}$			1.76144 pint	35.317 fl. ounces	1	
$=$	ıo litres	$=\frac{1}{80}{ }^{1}$,		$2 \cdot 20180$ gallons	0.35317 cub, foot	10	litres
$=$	$7 \frac{1}{2}$ veltes	$=\frac{3}{3} \frac{3}{20}$,		16.5135 ,	$2 \cdot 64874$ cub. feet	75	,
		$=\frac{1}{8000}$,		1.76144 pint	35.317 fl. ounces	1	litre
	$12 \frac{1}{2}$ litres	$=\frac{1}{640}$,		2.75225 gallons	0.44146 cub. foot	12.50	litres
	8 boisseau	= $\frac{1}{80}$	",		2.75225 bushels	3.53166 cub. feet	I	hectol.
$=$	Io setiers		,		27.5225 ,,	$35 \cdot 31658$	10	,
$=$	$=\quad 1 \frac{1}{2}$ muid	$=\frac{3}{16}$,		41.28375 ,	52.97487	15	"
		.			0.827205 grain	1.916 m	0.0542	gram
$=$	72 grains	. -			0.137776 cunce	137.9554 mils	$3 \cdot 90625$	grammes
$=$	8 gros	. .			I•1023II ,	$1 \cdot 10364$ ounce	31-25	
	16 onces				I 1023II pound	17.65829 ounces	$0 \cdot 5$	kilog.
	200 livres	.			I 9684 I 2 cwt .	3.53166 ft .-weights	100	,,
	Io quintaux	-	\cdot		0.984206 ton	35.31658 ,	1000	"

METRIC SYSTEMS.

The Baden System, used

Eng. Scientific Equiv. 0.984277 tithe 0.98427 foot $1.96854 \quad, \quad$ 0.98427 rod 1.45848 league 2.91695 leagues
. 0.96879 sq. foot 0.96879 sq. rod 3.87515 sq. chains 8.50859 sq. leagues
0.95355 fl . ounce 0.95355 cub. foot
137.3107 cub. fect 0.95355 cub . rod
5.2975 fl. ounces 52.975
0.52975 cub. foot
$5 \cdot 29749$ cub. feet
52.97487 ,
17.658 mils
$0 \cdot 17658$ ounce
1.76583
$17 \cdot 65829$ ounces
0.17658 ft -weight
1.76583

METRIC SYSTEMS,
No. 4. The Hessian System, used since 1818.

French	Equivalent.
25	millim.
250	"
600	,
2.5	mètres
1	kilom.
$6 \cdot 25$	déc. carr.
$6 \cdot 25$	mèt. carr.
25	ares
I	hectare
15.625	cent. cub.
15.625	déc. cub.
I. 5625	mèt. cub.
15.625	,'
$0 \cdot 5$	litre
2.0	litres
$8 \cdot 0$,
32	
I 28	hectol.
I. 60	,'
$9 \cdot 6$,
$0 \cdot 9765$	gramme
3.906	grammes
$15 \cdot 625$	",
500	, ',
50	kilog.

No. 5. The Swiss System, used in Canton Waadt since 1822.

French Equivalent.	
30	millim.
300	,
600	,
I 2	mètre
3	mètres
1	kilom.
$4 \cdot 8$,'
$8 \cdot 3559$	"
9	déc. carr.
9	mèt. carr.
$4 \cdot 5$	ares
45	,'
1	kilom. car.
27	déc. cub.
27	mèt. cub.
3.375	"
0.135	litre
1.350	"
I 3.500	litres
$40 \cdot 5$	
$6 \cdot 480$	hectol.
I 350	"
13.50	"
0.05425	gramme
0.9765	,
3.906	grammes
3I-25	
0.500	kilog.
50	,

CHAPTER III.

COLLECTIONS OF ORIENTAL MEASURES.

The Oriental measures in the following tables differ from the systematised measures of European nations and provinces principally in the very important consideration that they are not national systems. The measures are not identical throughout a kingdom or a province, but vary in different towns and different parts of the same province ; and to collections of such measures the word system would not be applicable.

It will, however, be noticed that there is a general resemblance throughout the whole of the measures given under the heads of
I. Turkish measures.
2. Greek measures.
3. Syrian measures.
4. Arab measures.
5. Egyptian measures.
6. Abyssinian measures.
7. Berber, Tunisian, and Moorish measures.
8. Algerine measures.
9. Persian measures.
r. North - Indian measures.

In fact, they appear to form detached parts and modifications of one general system or ruling intention, although the variety in value of the units may be occasionally rather large. This similarity is entirely due to the Moslem predominance that has existed and continued over the whole of those countries for a lengthened period, and it is on account of this evident self-classifi-
cation that the group of Moslem or Oriental collections of measures is treated apart.

The three grand divisions under which nations and races can be classified are, Christian, Moslem, and Pagan ; their metrical systems also group most conveniently in the same way. Modern Christianity is by association or through transition European, as it barely exists in Asia and Africa ; in the same way Islam is Oriental, and Orientalism is confined to parts of Asia and Africa ; while paganism covers the remainder of the worid unpeopled from Europe. Orientalism, forming the intermediate group, hence requires special notice in the sense here applied. It hardly admits of exact definition beyond that it includes races still under Moslem influence ; as it does not by any means include all races of Oriental origin. The Hungarian is an Asiatic and nearly a Turkish race by descent. The modern Russian, offspring from the blending of ancient Russian and of Slavonic races under Rurik, and only partially Finnish or Ugrian, is an undoubted Oriental by descent ; for the ancient Russian was a Scythian-Tatar, whose original location was near Mount Taurus, and the Slavonian before his original settlement on the Danube was a SemiPersian : the ancient Portuguese were probably Phœnician, and some of the Italian peoples descendants of Lycians and emigrants from Asia Minor: yet none of these nations can now be justly termed Oriental. The term Orientalism cannot either be confined or applied exclusively to races or countries that never fell under the yoke of Roman Imperialism, and hence retained their own measures ; for the reason that all the countries mentioned in the above list were subjugated, and submitted to the political domination of Rome, which was then considered
conterminous with civilisation. The distinctive limit is mostly coincident with that of religious belief, although original Christianity spread itself over Eastern nations; hence the origin of the present limit between Christendom and Islam, that is so marked in its bearing on Metrical Systems, requires some explanation. ${ }^{1}$
${ }^{1}$ Original Christianity, spreading under missionary and apostolic teaching, extended to the two extremes of Britain and Southern India; idolatry and paganism gave way before it, and Christian life and doctrine were accepted : but Christian dogma did not exist ; in fact, Christianity was actually Arian for nearly five centuries throughout the greater part of the world, both east and west ; the vagueness in detail of the Christian tenets rendering them acceptable to all forms of thought.

From A.D. 319 to 35I, Christendom was divided against itself: the two parties, Athanasians and Arians, were hostile factions. The former evolved and enforced a ponderous amount of dogma, besides aiming at a centralised hierarchical sway, an imperialised ecclesiasticism of arrogant authority; while the latter, wishing to retain the previously existing freedom of tenet, struggled against this usurpation of supremacy or dominion over the realms of religious opinion, and were for a long time successful. As, however, they in their turn, not content with opposing Athanasianism, also fell to drawing up creeds, and confessions of faith involving dogma, and were forced into drawing up theological definitions, and visiting transgressors with excommunication ; they thus ceased to remain Christians of the old type, and became rigidly sectarian, opposing the Athanasians in the main, and excomınunicating both Semi-Arians and Sabellians on the one side and on the other. Athanasianism eventually triumphing at central points with the aid of papal and imperial support, set to work to secure its ecclesiastical domination, centralisation, and invariability of dogma over the whole of Christendom. In fact, a new and rigid form of Christianity was propagated from A.D. 351 till A.D. 600 , when Spain was still partly Arian, and this had hardly obtained universal assent, when Mahammed reproduced a modified Arianism in the form of Islam in 604 to 623 A. D.

Islam allowed extreme diversity of tenet without interference, thus imitating early Christianity, but being severely monotheistic, was uncompromising with both pagan idolatry and Christian image-reverence. A hard and firm line thus drawn was rigidly adhered to. Association with or imitation of the infidel was henceforth impossible, even in the minutest detail of habit and custom ; towns and places were renamed, and pagan and Christian units of measurement rejected or altered.

The original uncompromising separation of the Moslem from both Christian and pagan in point of religion caused a most rigid line to be made practically between Islamic and non-Islamic measures, while the geographical locality of the Moslem races also intervened between Christendom and paganism, and thus divided Christian and Roman units from pagan and miscellaneous measures.

This dividing line in some places became eventually less defined and uncertain, more especially in India and Eastern Asia, where the population became only partly Moslem ; but it exists even now.

Among the peculiarities of Islamic units and systems may be noticed, the adherence to a cubit or a double cubit as a unit of length, and the absence of a foot, a want of rigidity about surface measures or land-units, and often their entire absence ; also the general absence of all measures of capacity both wet and dry ; cubic units, and submultiples of the cubic unit, are and have been comparatively rare ; both these and capacity units being generally supplanted by direct weight-units.

In some places, a pik (cubit) and a rotal (pound), or, as we might say, a stick and a stone, answered all purposes.

These facts inform us most clearly of the habits of the peoples using such systems, whether due to racetendency or to the effect of Islam. They indicate nonagricultural races, or tribes not much attached to tillage, rather pastoral and semi-nomadic, trusting to force rather than to definition as the preserver of boundary. They show those races to be not only abstemious as regards consumption of alcoholic liquid, but positively non-commercial, despising trade as a means of acquiring wealth,
and treating both usury and speculation as sinful. Races of this type being generally noble, brave, and religious, their habits would naturally be warlike, and their tendencies in time of peace would be to employ their energies in work involving skill and science, or, as we would say, professional, technical, operative and scientific labour. These deductions are completely borne out by the habits of the Spanish Moors, and the earlier Arabs in Egypt and Syria, and the former Indian Moguls: even the decadence of these races, the absence of all energy and scientific or skilled achievement or labour, is shown in the diminution in number of the metrical units in use, and the absence of both the very small and very large units that would occasionally enter into such work.

There is, however, one point as regards Moslem metrical units that is specially worthy of notice ; and that is, that anything like rigid adherence to standard is totally absent. One would imagine that a severe rigid monotheistic dominion would, at least within certain moderate limits, enforce some uniformity of unit, or of standard ; and one would naturally look to the standard units of MekkaSharif as prototypes. Certainly the pik of Mekka, which happened to be very nearly $2 \frac{1}{4}$ English feet, and the rotal of Mekka, that is very nearly a pound avoirdupois, are treated nominally as standard units, and these units are used at several other places including Stambul ; but anything approaching a wide-spread uniformity of standard is quite wanting.

The types of pik are, however, comparatively few; on examining the units of this type from the Russian arsheen to the Bushahr gezcha, pp. 57 to 59, it will be noticed that the values generally lie between 2 and $2 \frac{1}{3}$ English feet, and they are probably by derivation, sacred cubits :
while the piks of Arab origin, whether used in Arabia, Tunis, Algiers, or Morocco, are approximately $1 \frac{1}{2}$ English foot, and thus belong to another class, the natural cubit. The arsheens, piks, mihandesah, or halibins also form a class by themselves as land-cubits having high values. The distinction between the tradesman's small pik and large pik for two sorts of fabrics or stuffs exists in a way corresponding to that of the Italian and South European arrangement in bracci and ells.

Proceeding to larger linear units, the pace is a recognised Oriental measure, the most common type of which appears to be the pace of three Turkish or large cubits, or of four Arab or natural cubits, about six feet ; but there is considerable lack of exact information about Oriental paces. The Kassaba, gasab, or rod, having been also based on diverse cubits is also very various in value, and does not admit of very exact definition; the commonest type is the gasab of 2 paces, equal to 8 small cubits, or 6 ordinary cubits, or 4 large cubits, approximately 12 English feet, but sometimes more nearly ten old Arab feet. Tracing these gasabs back to their origin, they were apparently founded on ancient cubits of three sorts, the Hashemic cubit of 0.6417 m . or about 2.15 English feet, the Beledi cubit of 0.5775 m . or about r.90 English foot, and the later Arab cubit of 0.48 I 3 m . or about I.56 English foot; hence the diversity of the derived units. The same complication also occurs in the Oriental chains of Io gasab and in the Oriental miles of nominally 1000 paces, or 500 gasab, which are sometimes considered 5000 feet, and sometimes 6000 feet of different values. Oriental paces, rods and miles, are hence speculative units. The farsakh, agasha or parasang, a league representing an hour's walk on rather bad roads of
about 3 miles, is therefore the unit more commonly referred to, and in general use as an itinerary measure ; it may bc nominally fixed at 3 local miles, but actually is as variable as a Scotch bittock. Apart from the above units, that are purely Oriental by origin, there are others that have survived and existed for a long time in some Oriental countries, but are probably of Pagan origin. The Arabian gaz differs from a two-foot pik merely in name, but the gaz and hadid of Mesopotania, the zar' of Persia, and the North Indian gaz are evidently yards or double natural cubits. On these as primary units, the itineraries, the Indian kos of 2000 gaz , and the Persian farsakh of 6000 zar', and the surface units, the North-Indian biggahs are evidently based.

In Oriental surface measures, there is the Arab square chain, of 100 square gasab, and the Arab feddan of 400 square gasab, the former corresponding to the English rood, the latter to the English acre ; but their values, owing to the above-mentioned causes, are necessarily also variable. They are certainly adopted in Arabia, Turkey, and Egypt ; but more often units of surface in Oriental countries are quite unused ; it is said that there are none in Persia.

This absence of land units is notable, but due to assignable causes. The Oriental landowner or landholder is not, like the European, anxious to know how much land he holds, nor does he want others to know it; it appears to him inquisitorial interference; he has a tenderness on the subject similar to that of an English tradesman with regard to his books of account; and besides is afraid of assisting the tax-gatherer and the oppressive extortionate officials that are inseparabie from Oriental and semi-Oriental sway. Again even under
a just régime of fixed tenure and just officials, he is opposed to permanent taxation ; he perfectly admits the right of the Government to demand at intervals a war-tax, or a subsidy, for some comprehensible clear object, and he fully acknowledges it is his duty to assist the State; but a perpetual rate, and worse a rated tax, is in his eyes severe and repugnant in every way. A lump-sum demanded occasionally he cheerfully agrees to in a way strange to a North-European, but a yearly rate per acre opens to his vista of thought a possible double form of future enhancement, both by the acre and by the year; in fact, the principle is too dreadful to be admitted, otherwise than under strong compulsion. The land-units still existing in Oriental countries, that differ very markedly from the Arab feddan, are generally surviving pagan measures: the North Indian biggahs are units of that description.

Cubic measure also seems at present comparatively unknown in Oriental countries, almost all goods being estimated by weight. Capacity measures are occasionally used but generally rare ; as liquids, with the exception of oil, are not much consumed or sold as merchandise, and both liquids and grain are sold by weight. The strong objection to buying dry goods by weight, due to possible adulteration with water, does not exist in Oriental and hot countries under climates of very speedy evaporation; and the speed and time saved by filling a vessel in preference to weighing a liquid is unimportant to people that hardly appreciate the value of time. Pseudo-capacity measures are, however, sometimes used for convenience' sake ; these holding a certain weight of commodities of different sorts are of different capacities for the same weight in accordance with the specific gravities of the
merchandise. Real capacity measures are few, being generally the most commonly used and locally prevalent pseudo-capacity measures; thus in wheat-consuming countries it would be a wheat measure, in rice growing countries a rice measure, and in millet-growing countries a millet measure, holding a fixed weight of grain of each sort. Such a measure, being that most frequently used, eventually becomes the general measure for grain of all sorts, and then is a real capacity measure, independent of weight in all subsequent application. Some of the kiloz, mecmeda, ardeb, temen, tarri and almud thus become real capacity measures, while others are not ; it takes, however, much investigation to discover to which class any one of them may belong, and it has been found impossible to distinguish them in the tables of this book.

Oriental weight-units are, like most European pounds, antiquated in origin, and of irrecoverable standard ; that is, they cannot be readjusted or newly formed at any time from cubic measure ; for instance, the French kilogramme is the weight of a cubic decimetre of water, and the English foot-weight or talent is the weight of a cubic foot of water, but the Turkish, Egyptian, Persian and Indian, okas, rotals, wakia, and ser, do not admit of this, the sole check on them is by balancing them against a certain number of coins or pieces of money of known weight. Formerly they were recognised submultiples of talents, anciently based on the weight of water contained in cubic measures formed on then well-known linear units ; but the linear units were numerous, the talents were of several kinds, and the modes of subdivision were various; thus making the derivations complicated matters of archaic research, in all but a very few cases.

The rotal generally is now the term for an Oriental unit of weight corresponding in use to a European commercial pound ; while the yusdruma, cheki, saddirhem, okiejah, or wakiah is more often a smaller monetary pound corresponding to the former English Troy-pound ; the oka being a larger unit than either, nearly but not exactly falling in both series, being exactly equal to four okiejah, and nearly $2 \frac{1}{4}$ rotal ; this is the Turkish and the present typical Oriental mode. The Syrian rotals are exceptional, being large units exceeding the oka. In most cases the wakia is an ounce of 10 or 12 dirhems, while the saddirhem or small pound of 100 dirhems is absent from the system, and replaced by some subsidiary rotal or other special unit. The Persian dirhem is exceptional and has a high value, being about half an ounce. The miskal, mitkal, or kaffala is the primary unit most frequently used from Persia to Morocco ; its value is almost invariable, nearly 72 grains English, or one-sixth of an ounce. The foregoing units are the basic units of weight, some of them occurring and some being absent from each system. The principal difficulty in comprehending the systems lies with the waki', wakiah, or okiejah, for sometimes and more generally the wakiah is an ounce, as in Arabia, Egypt, Tripoli, Tunis, and Morocco ; while the okiejah in Turkey and the waki' in Persia are small pounds. The clue to clearness in such doubtful cases is to treat all Oriental units of weight generally either as multiples of some miskal, or of some dirhem, up to some approximate pound, and then to start again from the derived units, going up to some approximate kanthar or hundredweight.

Among the peculiarities of Oriental systems of weight units, there is one that partly extends into Pagan systems.

The man, pronounced mun, and sometimes called by the English maund, is a very variable unit which does not occur in European or Eastern Asiatic systems. It does, however, exist in Southern India, although not as a practically important unit, for the kandi is more frequently used. The man is a term applied to units of three sorts,
I. A very small man, between 2 and 14 lbs.
2. The kachcha man, of about 28 to 40 lbs .
3. The large man, of 70 to 80 lbs .

Probably the whole of these are by origin stones, although the smallest, those of the first class, alone approach the English stones in value, while those of the second are approximate quarters, and those of the third being about three-quarters of a hundredweight may be termed approximate hundredweights. Class I is peculiar to Arabia, Syria, Turkey and Persia ; class 2 is peculiar to Southern and Central India; while class 3 exists throughout the whole of Northern India, and in the special form of the man-i-hāsham in Persia also.

The second class thus exists beyond the strict geographical limits assigned to purely Oriental systems, although probably due to Oriental influence in some now unassignable manner.

Proceeding to the Oriental hundredweight or kanthar, it will be observed that this is in most cases ioo rotal, an arrangement followed by most European nations and derived from the Arabs; the exceptional kanthars are very rare.

Units above the kanthar are very few ; the bahar of Arabia is a load very varying in value, between $\mathrm{I} \frac{1}{2}$ and

7 hundredweight ; the kharwar of Persia is also a large load ; the kāra of Persia, a large unit of about $5 \frac{1}{2}$ tons, and the sauman of Northern India, of $3 \frac{1}{2}$ tons, are both equal to ioo large man.

On the whole the Oriental arrangement of weightunits is rather perplexing from local diversity of method.
OTTOMAN MEASURES. Eng. Commercial Equiv.

Eng. Scientific Equiv. 2.32501 feet	$\begin{aligned} & \text { French } \mathrm{E} \\ & 708 \cdot 65 \end{aligned}$	quivalent. millim.
2.25496 ,	687.3	"
2.24939	$685 \cdot 6$,
$2 \cdot 07143$	$63 \mathrm{I} \cdot 36$,
2.05351	6259	,
1.87158 foot	$570 \cdot 45$,
2.02202 feet	$616 \cdot 3$	
0.54693 league	I 667	kilom.
$1 \cdot 64078$,	$5^{\circ} \mathrm{OOI}$,
6.34900 sq. chains	0.58982	hectare
184.946 fl. ounces	$5 \cdot 2368$	litres
1.23996 cub. foot	35^{111}	,'
4.95986 cub. feet	$140 \cdot 44$	"
$0 \cdot 11327$ ounce	3.207	grammes
0.16990 ,,	4.811	grem
11:3269 ounces	$320 \cdot 725$,,
19.9352 ,	564.47	",
$28 \cdot 3172$,	801.81	
45.3075 ,	I 2829	kilog.
69.0941 ,	I•9560	"
18.9054 ,	$0 \cdot 53531$,
84•4932	2.39245	,
17.5004 ,	$0 \cdot 49553$	",
0.27185 ft .-weight	7.6974	,'
1.99353	56.45	,
$2.03884 \mathrm{ft}$. -wts.	57.733	"

Eng．Scientific Equiv．	French	Equivalent．
$2 \cdot 27432$ feet	$693 \cdot 2$	millim．
2.22150 ，	677 I	，
2．07386 ，	$632 \cdot 1$	s
1．90948 foot	$582 \cdot 0$	，
1.98350	604：56	，
2.24939 feet	$685 \cdot 6$	
0.62993 league	I．9200	kilom．
188980 ，	$5 \cdot 760$	，
6.34900 sq．chains	0.58982	hectare
181177 cubic foot	51.30	litres
$7 \cdot 24696$ cubic feet	2.052	hectol．
12．00763 ，	3.400	＂
28．25326 ，	$8 \cdot 000$	，
51.2090	14.50	，
77.93663 ounces	$2 \cdot 2068$	kilog．
80．52180 ，	$2 \cdot 2800$	，，
63．34735 ，	I．7937	，
20.42424	$0 \cdot 5782$	，
69．18517	I．9590	，
11．34368 ，，	0.3212	，
28．35920 ，	0.8030	，＂
64•16316 ，	I．8168	，
76．99579	$2 \cdot 1801$	，
44．73433 ，	I $\cdot 2667$	kilog．
45.37472 ，	I $\cdot 2848$	，
$42 \cdot 77544$ ，	I．2II2	，
0.40261 ft ．－weight	II．4	，
2.21435 ft ．－weights	$62 \cdot 7$	＂
2.81826 ，	$79 \cdot 8$	，
8．05218 ，，	$2 \cdot 2800$	quintals
6.33474	1．7937	quintal
2.04242	0.5782	，
6.41632 ，	I．8168	＂

SYRIAN MEASURES．

Eng．Commercial Equiv．
 bushel bushels
quarter
quarters ＝落
$=$若若范名 \approx 2.792520 ＂，

 に＝2 2 1.4119
5.6476
1.1697
2.7523
4.9860 4.865158
3.954429 I 274600 4.318853
0.708124 H

ARAB MEASURES.

French Equivalent.	
$685 \cdot 6$	millim.
482.4	,
$457 \cdot 1$	"
634.7	'"
3.840	meires
$38 \cdot 40$,
1.020	kilom.
$5 \cdot 760$,
23.040	,
$46 \cdot 080$,
14.7456	mèt. car.
0.58982	hectare
$0 \cdot 94593$	litre
7-56745	litres
$2 \cdot 38441$,
$95 \cdot 3765$	"
0.46294	kilog.
$0 \cdot 19440$	gramme
$3 \cdot 110352$	grammes
$31 \cdot 10352$,
$0 \cdot 680389$	kilog.
0.657710	,
0.462390	,
0.446977	',
0.493216	
0.1660	,
13.60778	,
9.2478	,
1-294 692	quintai
2.589384	quintals
$2 \cdot 041167$	"
3.69912	
0.8300	quintal

EGYPTIAN AND ABYSSINIAN MEASURES.

BERBER, TUNISIAN, AND MOORISH MEASURES.

French Equivalent.	
$672 \cdot 91$	millim.
$630 \cdot 73$,
473.05	,
671.05	,
533.2	"
9.845	litres
19.69	,'
64.00	"
$24^{\circ} 00$	",
23.34	,
$10 \cdot 42$,
$64 \cdot 80$;'
33.03	"
26.836	"
$5 \cdot 2848$	hectol.
I.07344	,
I•816695	"
0.50366	kilog.
0.49760	,,
0.50454	"
0.53818	,
I 2440	, $\quad 1$
0.49760	quintal
0.50366	,
$0 \cdot 50454$	"
0.53818	"
$0 \cdot 62200$	"

ALGERINE MEASURES.

PERSIAN MEASURES. ${ }^{1}$

INDIAN IMPERIAL MEASURES AND MEASURES OF NORTHERN INDIA.

$35 \cdot 30$

$\begin{array}{cc}11 \cdot 66382 & \text { grammes } \\ 58 \cdot 3191 & , ", \\ 0 \cdot 933 \text { Io5 } & \text { kilog. } \\ 37.3242 \text { I } & , \\ \text { I } & ,\end{array}$
Eng. Scientific Equiv.
0.18745 foot
Eng. Scientific Equiv.
0.18745 foot

0.835615 mèt. car.
\qquad
$2 \cdot 99913$ feet
1-49957 rod
0.5785 ,"
0.49986 ",
8.99487 sq.
2.24872 sq.
1.43918 sq. chain
2.82079 sq. chains
$2.72095 \Rightarrow$

$3.8003 \quad, 9$

 0.99914 cub. foot 26.97675 cub. yards $21 \cdot 18995$ cub. feet $0 \cdot 41193$ ounce 2.05963 ounces
32.95408 ,,
f. 31816 ft .-weigh 35•31658 ounces

ұu!̣d L9Stg. I I.761 $440 \quad "$
I cubic foot
I cubic yard
$2.4082 \quad$ quarters \qquad

CHAPTER IV.

PAGAN MEASURES OF EASTERN ASIA, AND THOSE INDIGENOUS TO AFRICA.

THE collections of measures of this type are markedly distinct from Oriental measures introduced and sustained by Moslem preponderance and dominion.

The geographical limit in India accompanying this type may be roughly drawn as a nearly tropical parallel of latitude dividing Northern India from Southern India: though in Asia the general limit is ultra-Indian.

It may be noticed, however, that, though the Moslem religion, and the Moslems themselves, entered into Southern India, parts of Malacca, the Eastern Archipelago, and greatly into China, they never established a firm preponderance and dominion on a very large scale in those regions ; had they done so, the indigenous measures would have been generally abolished or modified.

These collections are classified under the heads of-
I. Southern India and 6. Anam (or Cochin Ceylon.
2. Burmah.
3. Thaï (or Siam).
4. Singapore, Malacca, and

Prince of Wales Island.
5. Sumatra and Fort Marlborough, China).
7. Java, Borneo, Moluccas, \&c.
8. Philippines and Sulu Islands.
9. China.

Io. Japan.

Besides these, and in completion of the whole of the Pagan measures now used in the world, there is doubtless a comparatively large number of indigenous primitive measures, about which little or no precise information exists. These would include the measures used by savage and semi-savage tribes and peoples in Central Africa, that are independent of Christian and Moslem influence; also any indigenous American measures surviving among the Red-skins of North America, and the descendants of the Incas, Caribs, Tupi-speaking Brazilians, and Patagonians.

All such units owe their sole importance to the evidence they afford of ethnological distinction, variety, origin, and habit. It is hence much to be regretted that travellers, anthropologists, and scientific men should have comparatively neglected the metrical units of savage and expiring races, although they may now be of no commercial utility.

Reverting to the better-known Asiatic Pagan measures before classified, it will be noticed that they generally have some similarity to ancient European measures.

The cubits of Eastern Asia (see page 59) are mostly approximate natural cubits, or English cubits; the double cubits of Thair (Siam), Sumatra and Borneo, are approximate English yards ; and the fathoms of Burma, Anam (Cochin China), Thaï, Sumatra, China, and Japan, are markedly parallel with European fathoms.

The foot that exists in China and Japan, though markedly missing in Pagan measures generally, is evidently an exceptional unit; the Malabar ady of the Western (Muabbar) coast of India was perhaps imported from Syria or Arabia, but certainly was not
indigenous. The parallelism between ancient China and ancient Egypt and Chaldæa leads to the presumption that the Chinese, and consequently also the Japanese foot, was Chaldæan by origin; while all European feet were of Roman or Christian derivation, never indigenous ancient units. The Kymri, whether in Britain, Gaul, or the Kimmerian Chersonese, never had any foot-unit, as far as is now known. The Kymric Welsh had a goad, of about $27 \frac{1}{2}$ English inches, which was probably divided into halves, quarters, and eighths, independently of any foot ; although it may have been by origin a sacred cubit.

The general resemblance between ancient European and present Asiatic Pagan units is hence most striking ; any few exceptions to the rule regarding the absence of the foot can but aid in establishing the main principle.

The rods of Pagan-Asia are mostly double-fathoms; the exception being the rod of China, which is a doublepace of ten local feet; large units corresponding to the pole exist in some countries in addition to the rod ; also some rather large chains ; the itinerary units, approximate furlongs, leagues, and journeys are rather varied.

The surface-units of Pagan-Asia, both small and large, are necessarily also very diverse in value, yet among them may be noticed the biggah of Orissa, identical with the English acre of 4840 square yards, also the Sumatra square orlong, which is identical with the Madras kān̄̄ (in vulgar English cawney), a very convenient unit of 6400 square yards, giving a corresponding linear orlong or kānī-side of exactly eighty yards. Similarities of this kind cannot be justly attributed to mere hazard, or fortuitous accident.

Capacity measures, shown in the various parahs,
markals, baskets, gantangs, balli, kula, \&c., mentioned on pages 183, I84, and 189, form the chief distinctive between the Pagan and Oriental-Moslem systems of measure ; in the latter none or hardly any such units exist. This peculiarity extends also to large capacity units, as shown by the garsah, lasts and coyan, given at page 191.

In the Asiatic-Pagan units of weight, the tching or king (Anglicè, catti) is the unit corresponding to the pound in a large number of cases ; it is used in China, Japan, the Chinese Archipelago, and through a great portion of Eastern Asia. In some cases, however, the principal unit of weight is a double pound, but this is more generally a monetary catti, as that of Malacca, Acheen, Singapur, and Thaï. The Kachcha sers, or seers of Southern India are exceedingly variable, and are mostly less than a pound, corresponding to the former English troy pound; but the vis of Southern India, Burma, and Malacca, and the variable catti-utan of Sumatra are mostly approximate triple pounds, and are the commercial standard weight-units.

The kachcha man of Southern India is an approximate quarter (English weight-quarter i4 pounds) peculiar to that country, but not very much used even there, as the next larger unit, the kandi, with its quarters and eighths, throws it out of employment. This kachcha man, an improper or incomplete maund, must be distinguished both from the very small man of Turkey, Syria, Arabia, and Persia, which is a stone, and from the $p a k k a$, real, proper, or large man of Northern India, and man-i-hasham of Persia and Mesopotamia, which are approximate hundredweights. The term man is applied to units of these three sorts,
probably from the reason that the word meant a stone in some language, and that all such corn-weighing units were practically stones of various sizes. The similarity between the kachcha man of Southern India and the proper or large man of Northern India solely consists in their being in each case composed of forty sers ; but as the North-Indian ser was a large unit and the SouthIndian kachcha ser was a small unit, the difference in value is very great. There are, however, a few exceptional cases that can be easily accounted for by ethnological and historic causes. In the main, the kachcha man is an indigenous Pagan unit quite distinct and peculiar ; it is yet a most troublesome unit in any system, and its total obliteration from the measures of the world would hence be advantageous.

Among Pagan weight-units, the load, generally termed the bahär or kandi, holds a prominent position ; its value ranges between three and six English hundredweight as extremes, with a mean of about $3 \frac{1}{2}$ or 4 hundredweight (see page 234). Its formation is various, according as it is based on a pound, or ching, a double pound, or a vis or triple-pound ; it has in most cases degenerated as regards simplicity and directness of multiple, from having been forced by English commerce into another form, its nearest equivalent in avoirdupois pounds.

Proceeding to the largest weight-units corresponding to English tons and lasts, these appear rare among Pagan measures ; the garsah of Southern India and Ceylon is the only one of which full record exists; possibly there may be others that have not attracted notice. The garsah when a weight-unit is about 4 tons; but it might perhaps be more strictly considered a
doubiful or nominal unit partly of capacity and partly of weight ; although there are sufficient grounds for treating the garsah separately as a weight-unit and as a capacity-unit of dry measure. See pages 191 and 237.

Pagan systems of measures may on the whole be considered as but little inferior to either Oriental or European systems. Decimalisation has been carried out thoroughly by the Chinese and Japanese. Perfect systematisation is only known to exist in the measures of Thaï (Siam), which have been lately reorganised ; the capacity units being cubicised on the niu, and standards supplied by the English Warden of the Standards. The ordinary common defect in Pagan, as well as in Oriental and European systems, is that the weight-units are not systematised or adjusted to cubic measure, and thus remain independent, arbitrary multiples of coins frequently long obsolete.

In thus completing an account of the measures of the world, it becomes necessary to apologise for the absence of indigenous African, Australasian, and American measures in this book. Communications have been opened with travellers which may eventually result in procuring detailed and trustworthy information on the subject. At present vague and general statements alone exist. The indigenous savage African apparently most often adopts a fathom as a standard unit of length, and divides it into four natural cubits ; the weight units are apparently very diverse and arbitrary, shells, berries, and eggs ; and the capacity units are gourds and calabashes.

Among indigenous African measures, those of Guinea and of Madagascar have been longest known to a partial extent. The jacktan of Guinea is a rod or double
fathom, reputed to be 12.005 English feet in value; the refe of Madagascar is a fathom reputed at 6.56 English feet, but it appears also to be very variable, generally varying between 4 and 6 feet in different provinces. The indigenous capacity measures of Guinea are not yet forthcoming-it is said that Abyssinian measures, the kuba and ardeb, are used there ; but those of Madagascar show an evident connection with those of the Chinese Archipelago, whence former immigrations came.

The series is thus :-
I zatu $=8.5$ trubahuash $=17$ bambu $=100$ voules. The zatu is thus about 7.339 gallons, the voule 0.5867 pint, and the bambu i.7614 quart.

In Guinea, the weight-urits are peculiar:-
I benda $=2$ benda offa $=4$ egebba $=8$ piso $=16$ agerac or aki $=32$ media tabla; the value of the benda being 989.6 grains, or about $2 \frac{1}{4}$ ounces, and the media tabla 30.925 grains ; these are monetary units used for gold dust. There is also a kanthar, subdivided into 5 gamel, which may be of Moslem and of Moorish origin, although it is unusually large, 0.9635 ton.

In Madagascar there is also a series of monetary weight-units as follows:-

I sompi $=2$ vari $=3$ sacare $=6$ nanki $=12$ nanke,
the sompi being about 60 grains, and the nanke 5 grains.
In some portions of Africa various Moslem units are employed, Arab, Egyptian, and Moorish ; near the old Portuguese settlements, Mozambique and Loando, old Portuguese measures are in use. At the Cape of Good Hope, and in Southern Africa, though English measures are now generally employed, and formerly Dutch units A A
were in use, there were also some compounded measures of capacity that afford some idea of the old indigenous measures ; they were :-

$$
\text { Last }=46 \text { balli } ; \text { balli }=5 \text { gantang, }
$$

the last being 7.283 quarters, and supposed to represent a capacity holding 3200 troy Dutch pounds of wheat; and the balli 1.266 bushel, holding 500 troy Dutch pounds of wheat. The arrangement of units and their names are similar to some in Sumatra and at Batavia; but whether they were brought over by the Dutch or by the native immigrants at an earlier epoch, and afterwards merely modified by the Dutch as regarded value, is a matter that may perhaps be considered doubtful; although the latter appears more probable. This probability is further supported by the analogy of the bambu of Madagascar, which is most markedly a unit of Sumatra derivation.
SOUTH INDIAN AND CINGALESE MEASURES.

French Equivalent. 0.457062 mètre	
0.914123	,
$680 \cdot 413$	millim.
469.859	
$0 \cdot 265603$	3 mètre
$6 \cdot 37449$	metres
$6 \cdot 905697$	
$2 \cdot 275170$	
2.478290	
$6 \cdot 449647$	mètres
I•828 246	kilom.

Commercial Equiv.

$\begin{gathered} \text { Eng. Commerci } \\ \text { I } \cdot 500 \\ \text { I } \end{gathered}$	al Equiv. foot yard
2.233	feet
I. 542	foot
10.46	inches
$20 \cdot 92$	feet
22.663	,
$7 \cdot 4666$,
$8 \cdot 1333$	"
21-1666	
2000	yards
6400	sq. yds.
$2477 \cdot 83$,,
$2940 \cdot 05$,,
3406	,"
100	cub. ins.
4000	
2.02927	gallons
579792	
9.05925	quartrs.
144.918	
13.6875	bushels
2.875	pints
$7 \cdot 000$	gallons
2.367	
780	cub.ins.
12480	,,

A 12
South Indian and Cingalese Measures-(continued).

Standard temperature 85° Fahr. | Niu |
| :---: |
| Kion |
| Kok |
| Kon |
| Kin |
| Sen |
| Sen |
| Trod |
| Roen | Roeneng Square sen Cubic niu Thanan. Thangsat Old units Bat

Chang or ching $=80$ bat
Hap . . $=50$ chang
Monetary sompay $=2$ pay $=4$ clam $=48$ grs. of rice Commercial tical $=$ Monetary tical $=4 \mathrm{miam}=8$ fuang $=16$ sompay
Also, the Malacca catti $=20$ tael $=80$ tical (com.). Also, the Malacca catti $=20$ tael $=80$ tical (com.)
At Cancao and in Camboja an English catti . Malacca pecul = IOO Malacca catti . . Malacca pecul $=$ Ioo Malacca catti
At Cancao and Camboja the English pecul $=$
English catti English catti
15.167
1.21336 grammes
$60.668 \quad, \quad$,
0.91437 grammes
$7.65 \quad$,
$14.63 \quad$,
0.61235 kilog.
0.60479 ,,
0.61235 quintal
0.60479 quintal
ANAM OR COCHIN CHINA.
N.B. - The values given are mean or approximative values ; the real values vary locally to a considerable degree.
Tak

Eng．Scientific Equiv．
$1 \cdot 49957$ foot
$1 \cdot 52156$ ，＂
$5 \cdot 99826$ feet
$1 \cdot 19965$ rod
$2 \cdot 39930$ chains
$35 \cdot 97948$ sq．feet
$1 \cdot 43918$ sq．yard
$5 \cdot 75668$ sq．chains
2 15716 sub．foot
 0.14127 cub．foot
 ：苍 $=$ 0.65186 ounce苍
a 2
ニ2 2＝2

 งхәтхпь $£ 9088.9$

I．3333 pound $\begin{array}{cl}\text { spunod } & \text { 16ヶo．} \\ 6 & \text { ooSE．I }\end{array}$

40.692
5.950

號 に2 $2=22$ 33.333
35
 Janselon Island bahar ．$=80$ viss $=320$ poot
 NiN 7.77473
SUMATRA AND FORT MARLBOROUGH.

French Equivalent.	
228.531	millim.
$457{ }^{\circ} 062$,
$475 \cdot 344$,
322.81	
0.914 123 mètre	
I. 828246	
$3 \cdot 656493$ mètres	
$20 \cdot 8905$ déc. car. 0.835615 mèt. car.	
3.342460	
13.36984	
0.54985	litre
$6 \cdot 59823$	litres
$65 \cdot 9823$	
52.78584	
17.45	,
4.4204	litres
$35 \cdot 3632$	hectol.
4.9	litres
49°	
39°	hectol.
0.60479	kilog.
0.960301	,
0.615254	,,
$0 \cdot 661475$,
1-587574	,
1.741796	
1*814371	,
36.28742	,
3 I 75149	
$0 \cdot 60479$	quintal
$2 \cdot 54012$	quintals
I'92060	quintal

JAVA, MOLUCCAS, CELEBES, BORNEO, PHILIPPINES, AND SULU ISLANDS

CHINESE MEASURES, oased on the old value of the Kambuchin or Board of Works Standard.

JAPANESE MEASURES.
 Square shaku ordinary • • • ,
Square shaku for landshaku $\begin{array}{ll}\text { IjJe. } & =30 \text { subo }=1000 \\ \text { Ittai }\end{array}$ $\begin{array}{lll}\text { Ittau } \quad . & =10 \text { ijJe }=10000 \quad \text {, } \\ \text { Itchu } & \text {. } & =\text { io ittau. . . }\end{array}$ Göo, subdivided decimally to millionths . Shöo
To . Nomme Riome King
Tan
INDIGENOUS AFRICAN MEASURES.

French Equivalent.	
I 8575	mètre
$0.33 \dot{3}$	litre
2.00	litres
4.00	,
33.333	,
647.99	milgr.
I 29598	gramme
I•94397	,
3-88794	grammes
$9 \cdot 20$	litres
$46 \cdot 00$,
2I•16	hectol.
$3 \cdot 658$ or7 mètres	
4.0078	grammes
$8 \cdot \mathrm{I} 56$,
16.0313	,
$32 \cdot 0625$,,
64.1251	
I 9.958	quintal
$0 \cdot 979$	millier

CHAPTER V.
 MEDICINAL AND LAPIDARIES' SYSTEMS.

IT is comparatively recently that in Europe medicinal weights and measures have been incorporated in the commercial weights and measures of various countries and nations ; in some cases, more notably in Russia, this has not yet been effected, while in England the transition is now merely imperfectly effected. In Oriental countries under Moslem sway, the medicinal weights, the dram and its subdivisions, appear to have always formed part of the commercial measures, and never a segregated collection; in Pagan countries the monetary weights most frequently served also as medicinal weights; and generally in olden time compounding was effected entirely by weight, and independently of measures of capacity.

The adoption of three distinct systems of commercial, of monetary, and of medicinal weight, appears to have been confined to European nations. The typical European unit of monetary weight was the old Cöln marc of 8 ounces, with which the old English or AngloSaxon marc was nearly identical ; the typical unit of commercial weight in Europe was not a solitary unit, for it is probable that some one Oriental rotal, rottolo, or arratel, or a variety of them, formed the basic units in Southern

Europe, while in Northern Europe the double-marc became the commercial pound ; the typical or basic unit of medicinal weight in Northern Europe was the Nürnberg pound of I2 ounces, or marc and a half of Nürnberg, though in Southern Europe no corresponding single unit of medicinal weight retained any such marked importance.

Treating the matter broadly, the monetary unit com-. monly used was an eight-ounce marc, the medicinal unit was a twelve-ounce pound, and the commercial unit was a sixteen-ounce pound; but these marcs and pounds generally belonged to different systems or scales of measure, before their incorporation into a single one.

Immediately this incorporation is effected, the medicinal pound becomes either obsolete or merely nominal, the commercial ounce of the nation becomes the medicinal ounce, and its mode of subdivision into smaller units alone retains importance in its bearing on the compounding of drugs.

Under these circumstances, which are generally true of Europe in the nineteenth century (the period to which this book is intended to apply), the values of the medicinal ounce and its various modes of subdivision in
*Europe form the principal part of any useful information on this subject ; these will be found at the end of this section in tabular form, arranged under the heads of the various nations to which it applies.

On referring to it, it will be noticed that the typical mode of subdividing the ounce in Northern Europe is the Nürnberg method.

I ounce $=8$ drams $=24$ scruples $=480$ grains.

In Southern Europe, in Italy, Spain, Portugal, and France, the mode was

$$
\text { I } \text { ounce }=8 \text { drams }=24 \text { scruples }=576 \text { grains }
$$

the difference between the two consisting in dividing the scruple into 20 grains in Northern Europe, and into 24 grains in Southern Europe. In some cases the obolus of half a scruple and in others the carat of four grains were units used in addition to the above. The Neapolitan mode of subdivision formed the only exception to the above general type.

The introduction of metric measures in France, Italy, and the Netherlands in the earlier part of this century and in other countries in recent times, had for its principal effect on medicinal weights the abolition of pounds, ounces, and grains, and the substitution of the gramme for the scruple which it nearly represented; the gramme thus became the unit of metric medicinal weight, and its decimal multiples and sub-multiples became nominal measures. (See 'Medicinal Measures of France, Italy, and the Netherlands.')

In England the medicinal measures are particularly unfortunate, not having yet gone through their transition stage, and not being yet cleared of the difficulties resulting from borrowing in ancient times from France both the Troy grain and the avoirdupois pound. The medicinal weight is still old Troy weight, but medicinal measures of capacity are avoirdupois fluid ounces with submultiples. The best remedy for this would be in accordance with general improvement of the system ; the adoption of an English millesimal ounce, $\frac{1}{1000}$ of the foot-weight; and the subdivision of this ounce into 1000 mils or thousandths. See also 'Pro-
posed Systems' at the end of the book. Under any circumstances, the medical measures of capacity, the fluid ounce, fluid dram, and fluid grain (or liquid grain as it is officially termed) ; or the fluid mil, on the other method, should correspond with the weights of similar name. This correlation is preserved in the French System, where the centimètre cube corresponds to the gramme.

The entire abolition of separate medicinal measures of all sorts, and the unification of a national series of measures, is the natural course of development, and censtitutes progress in this special branch of measures.

Lapidaries' Systems.

Diamonds, pearls, and precious stones are frequently estimated in weight-units, distinct from both the commercial and medicinal measure of the country or place. They are mentioned as weighing a certain number of carats ; these carats are almost invariably divided into four grains, and these grains are further divided into quarters, sixteenths and sixty-fourths, on a binary scale. Such carats vary in value in various countries, although they may be mere departures from some original $\kappa \varepsilon \rho a ́ \tau \iota o \nu$, perhaps an ancient Alexandrian carat, or in later times from the Amsterdam carat.

The estimation of the value of rough and cut diamonds is a matter closely allied to the values of the carat as a weight-unit, and requires some explanation. The value of an uncut diamond varies with the square of its actual weight expressed in carats; thus, taking a price of $£ 2$ per carat, the value of a five-carat uncut diamond is $5 \times 5 \times 2=£ 50$. The value of a five-carat cut diamond, which has lost about half its weight in cutting, is
similarly estimated at a price of $£ 2$ per carat, but is based on the square of double its actual weight in carats ; thus $10 \times 10 \times 2=£ 200$.

In most places pearls are estimated in diamondcarats; in others there are special pearl-carats, of different value. There are also both real and nominal weight-units applied to pearls. For instance, Bombay pearls are first estimated by weight in tanks of real weight ; the tank being $=24$ ratti (see table), or 72 English grains; they are secondly estimated in nominal chows by calculation thus. The square of the number of tanks multiplied by 330 and divided by the number of pearls weighed, gives the number of chows; and the current price is applied to the chow. If 50 pearls weigh 4 tanks, and the chow is worth 12 rupees, their value $=$ $\frac{4 \times 4 \times 330 \times 12}{50}=1267.2$ rupees, or about $£ 126$.

Madras pearls are differently estimated; they are first weighed in mangals of real weight-units, and then estimated in Madras chows by calculation thus. Three quarters of the square of the weight of the pearls in mangals is divided by the number of the pearls weighed to obtain the number of chows, and the current price is then applied to the Madras chow. Thus, if 60 pearls weigh 50 mangal, and the price of the Madras chow be 40 rupees, the value of the pearls $=\frac{3}{4} \times \frac{50 \times 50 \times 40}{60}=$ 1250 rupees, or $£ 125$.

In both such cases the chow is a mere nominal unit of estimation; although there is also an Indian chow that is a real weight-unit.

The term carat, when applied to precious metals, gold and silver, is not a weight-unit, but a mere mode of
expressing the purity or fineness of the metal in twentyfourths. Thus 18 -carat gold is metal in which 18 parts out of 24 , or three-fourths, are pure gold; the remaining 6 parts, or one-fourth, being alloy. This method of estimating fineness is due to the old marc having been divided into twenty-four real carats, or actual weightunits. The more modern method is to estimate fineness in thousandths; thus gold 750 fine has 250 parts alloy, and corresponds to I8-carat gold; three-quarters of the metal being pure gold in each case.

Reverting to the real carats of various nations, their values will be found in a table immediately following the tables of medicinal measure in this chapter.

Besides these carats, there are in some countries other weight-units that are used for precious stones, and occasionally for precious metal also. One of the most notable of these is the Indian gonj, gunja, or gundumini ; it is by origin a hard scarlet pea, dotted with black, which when dry is very invariable in weight ; its weight is also termed a ratti or rutti; but in a few places the gonj and the ratti are distinct, the latter having become an abstract unit apart from the former, subsidiary to the tolah or weight of the local rupee.

Another of the more notable of these weight-units used for precious stones and precious metal is the candarin, or condorine, or cantarai, also termed by the Chinese a fun or fan, and by the South-Indians a fanam, and used all over the Indo-Chinese Archipelago. This is by origin a large lentil, or pea, of a pinkish colour dotted with black, about double the size of the gonj, and possessing the same quality of very slight variability of weight when dry; is probably a variety of the same botanic genus or species. The value when reduced to
absolute standard became a subsidiary part or submultiple of the weight of some local coin, rupee or pagoda, or a decimal fraction of some local ounce or tchen, as in China and Japan. The term candarin, vulgarised by the English into condorine, is probably a Portuguese corruption of the Indian word cantarai ; the word fanam is also Indian, but the word fan or fun is Chinese, though perhaps of South-Indian origin, and now denotes not only the tenth of a chien or ounce, but is a general term for a tenth, or a decimal fraction.

The values of the ratti and the fanam are given in tables following that of the carat, at the end of this chapter.

MEDICINAL MEASURES OF WEIGHT AND OF CAPACITY.

Nuremberg Weight.

THE medicinal pound of Nuremberg, $=\frac{3}{4}$ Nuremberg monetary pound, was formerly universally adopted in Germany and Russia :

	English French
Value of the Nuremberg pound	5522 grains $=357 \cdot 85$ grammes
The Nuremberg ounce $=\frac{1}{12}$ pound	$460 \cdot 17$ grains $=29.821$ grammes

The subdivision of the Nuremberg ounce was:

Ounce	Drachms	Scruples		Oboles		Grains	Grammes
I	8	24	$=$	48	=	480	29.821
	$1=$	3	=	6	=	60	3.726
		I	=	2	=	20	1.243
				1	$=$	10	0.622
						1	0.062

Compounding was then mostly done by weight.
In modern times the commercial ounce of various nations has been mostly taken as the unit of medical weight. The Nuremberg or German mode of subdivision into 480 grains is used by most northern nations of Europe ; the French mode by southern nations.

Denmark, Norway, and Germany.

The Nuremberg pound and ounce are generally adopted, with their typical subdivision, for medicinal purposes. (See also Prussia, AustroHungary, and Bavaria.)

Sweden.
The Swedish medicinal pound is $\frac{103}{123}$ of the skalpund, and is 7410 as. Value of the medicinal pound $=5478 \cdot 5$ English grains $=355$ grammes. Value of the medicinal ounce $=456$ "54 English grains $=29.583$ grammes . Its subdivision follows the Nuremberg type as given above.

England.
The medicinal weights and measures are now in a state of transition.
At present (1881) the English medicinal ounce (for weight) is the old Troy ounce of 480 grains ; this grain being identical with the commercial grain (a Troy grain).

The subdivision of the medicinal ounce is thus:

The English medicinal measures of capacity are arranged on two alternative systems, based on the commercial fluid ounce at 62° Fahrenheit normal temperature.

First

The latter system is not yet customary, although standards have been supplied to the public.

A preferable mode of subdivision may be used for technical purposes, both in weight and in capacity, thus,

I ounce	$=1000 \mathrm{mils}$
I fluid ounce	$=1000$ fluid mils

\& I cubic foot\end{aligned}=1000\) fluid ounces
but this method is not yet customary.

Prussia.
The medicinal ounce is identical with the commercial ounce. Value of the ounce 45 I.II English grains, or 29.232 grammes. Its subdivision follows the Nuremberg type (see preceding page) into 480 medicinal grains.

Austro-Hungary.

The medicinal ounce is identical with the commercial ounce. Value of the ounce $540 \cdot 19$ English grains, or $35 \cdot 004$ grammes. Its subdivision follows the Nuremberg type (see preceding page) into 480 grains.

Bavaria.
The medicinal ounce is identical with the commercial ounce. Value of the unze 462.97 English grains, or 30 grammes. Its subdivision follows the Nuremberg type, or it may be divided into grammes, and decimal parts of the gramme.

RUsSia.
The Russian medicinal funt $=\frac{7}{8}$ commercial funt, and is divided into 12 ounces.

> Medicinal pound $=5529 \cdot 765$ Eng. grs. $=358 \cdot 323$ grammes
> Medicinal ounce $=460 \cdot 814 \quad, \quad=29 \cdot 860 \quad$,

The subdivision of the ounce into 480 grains is that of the Nuremberg type (see above).

The former Russian medical weights were those of Nuremberg.
The former Polish medicinal pound of 1819 was fixed at 358.5 grammes $=5532.49$ grains English, and the ounce at 29.875 grammes $=461.04$ grains English ; its subdivision was like that of Nuremberg.

France.

The gramme is the unit of medicinal weight; and the cubic centimètre or millimètre that of medicinal capacity ; the decimal multiples and submultiples of both are solely employed.

> I gramme $. \quad=15.432 \mathrm{I}$ English grains
> I cubic centimètre $=15.432 \mathrm{I} \quad$ liquid grains
the mode of subdivision is:-

$$
\begin{aligned}
\text { I kilogramme }=1000 \text { grammes } & =1000000 \text { milligrammes } \\
\text { I gramme } & =1000 \text { milligrammes }
\end{aligned}
$$

and

$$
\text { I litre }=1000 \text { centim. cub. }=1000000 \text { millim. cub. }
$$

$$
1 \text { centim. cub. }=\quad 1000 \text { millim. cub. }
$$

From 1812 to 1840 , the mesures usuelles were:-
the livre usuelle $=500$ grammes $=7716.05$ English grains
the once $,,=32 \quad, \quad=493.83 \quad$,
and the following was the mode of subdivision (codex) :-

Once	Gros		Grammes		Grains
I	8	$=$	32	=	640
	I	=	4		80

Before 1840 , the livre $=367 \cdot 13$ grammes $=5665 \cdot 67$ English grains
the once $=\frac{1}{12}$ live $=30.594 \quad, \quad 472 \cdot 14 \quad$,
and the following was the old French mode of subdivision :-

$\begin{gathered} \text { Once } \\ \mathbf{I} \end{gathered}$	$\underset{\text { Drashmes or }}{\substack{\text { Gros }}}$			Deniers or Scrupules		Grains
	=	8	$=$	24		576
		1	$=$	3		72
				1		24

This old French mode of subdivision into 576 grains was typical in Southern Europe, and was employed in Italy, Spain, and Portugal.

Italy.

Metric units as in France, but with local names:-
Oncia $=100$ grammes $=1543.2$ Io English grains
Grosso $=10 \quad,, \quad=154.321 \quad$,
Denaro $=1$ gramme $=15432 \quad$, ,
Grano $=0 \cdot 1 \quad, \quad=\quad \mathrm{I} \cdot 543$ English grain

The former Italian medicinal ounces were local light commercial ounces, or twelfths of the light commercial pound, peso sottile, and had the following values :-
Tuscany $28 \cdot 296$ grammes $=436 \cdot 67$ English grains
Roman Stat2s of the Church. $28.258 \quad, \quad=436.08$,,
Sardinia, Genoa . . . 25.617 ,, $=395.32$,,
,, Turin . . . $26 \cdot 500$,, $=408.95$,,
Lombardy, Milan . . 27.233 ,, $=420 \cdot 37$,,
Venetia, Venice . . . $25 \cdot 108$, $=387.47$,
Kingdom of Naples . . 26.729 ," $=412.49 \quad$,,
The typical mode of subdivision was, excepting at Venice and Naples, the same as the old French method, into 576 grains (see France).

At Venice, the sazio of one-sixth of the ounce was an additional unit of subdivision.

The Neapolitan mode of subdivision into 10 drams was of Oriental type.

The Netherlands.
The metric units as in France, but with local names :-

The medicinal pound of Holland and Belgium was $\frac{3}{8}$ kilogram $=375$ wigte or grammes.

For values of metric units, see France and Italy.

Switzerland.

At present the French metric measures are used for medicinal purposes. From 1822 till lately the old mesures usuelles (see France) ; before 1822, the Nuremberg pound in most cantons, but at Basle, Friberg, Berne, Neufchatel, and Soleure the older Parisian livre of 12 onces poids de marc of $367 \cdot 13$ grammes.

For all these see France, and Nuremberg measures.

Spain and Portugal.

The Spanish and Portuguese medicinal ounces are identical with the respective commercial ounces.

Spanish ounce $=443.67$ English grains $=28.75$ grammes
Portuguese ounce $=442.75 \quad, \quad=28.69 \quad$,
The mode of subdivision is the same in both cases, and is nearly identical with the typical old French mode.

The Levant.

The Venetian medicinal weights (see Venice, Italy). Also Oriental commercial dirhams, \&c. (see Commercial Systems of Turkey, Syria, \&c.)

Oriental Countries.

The medicinal weights are identical with both the commercial and the monetary weights, all of which are arranged in a single system. See subdivisions of commercial measures.

Pagan Countries.

The medicinal weights for compounding are identical with the monetary weights in many cases; in others sufficient information is not available.

TABLE OF MEDICINAL OUNCES.

In some cases identical with commercial ounces.			
$\left.\begin{array}{c}\text { Denmark \& } \\ \text { Norway. }\end{array}\right\}$ Nuremberg ounce $=480$ grains .	460•17	1.0532	29.821
Sweden. Medicinal ounce . $=480$ grains	456	110448	29.583
England. Troy ounce . . $=480$ grains	480	$1 \cdot 0985$	$3 \mathrm{I} \cdot 103$
Millesimal ounce . $=1000$ mils	436.97		28.315
Prussia. Commercial ounce . $=480$ grains	451.11	$\downarrow \cdot 0324$	$29^{2} 232$
Austro-Hungary. Com. ounce $=480$ grains	540'19	1-1362	$35^{\circ} 004$
Bavaria. Commercial ounce . $=480$ grains	$462 \cdot 97$	1.0595	
Germany. Nuremberg ounce. $=480$ grains	$460 \cdot 17$	1.0532	29.821
Russia. Medicinal ounce $\dot{S}=480$ grains	$460 \cdot 8 \mathrm{I}$	1-0546	29.860
France, Italy, Netherlands, Switzerland, and Greece. The gramme $\quad=1000$ milgr.	15.43	$0 \cdot 0353$	1
Spain. Commercial ounce . $=576$ grains	$443 \cdot 67$	1.0154	28.750
Portugal. Commercial ounce $=576$ grains	442.75	$1 \cdot 0132$	28.690
Levant. Venetian com. ounce . $=576$ grains	387.47	0.9574	$27 \cdot 108$

MEDICINAL MEASURES OF CAPACITY.

England. Fluid ounce avoir. $=437 \frac{1}{2}$ liquid grains $=480$ minims
England. Fluid ounce millesimal $=1000$ fluid mils.
France. Centimètre cube $=1000$ millimètres cube.

Fluid oz.	Fluid oz.	Cent. cub
I	$1 \cdot 0025$	
- 9975	1	28.315
$0 \cdot 0352$	$0 \cdot 0353$	I

N.B.-For details, see preceding pages.

LAPIDARIES' WEIGHT-UNITS.

Reputed values of the carat.
The carat invariably is $=4$ carat grains.
England. Diamond carat
$\begin{array}{ll}, \quad \text { Pearl carat } & \cdot \\ \text { Germany. } & \text { Kölnische diamant-karat }\end{array}$
Austro-Hungary. Vienna diamond carat
Holland. Amsterdam diamond carat
Russia. Amsterdam diamond carat
France. Old diamond carat $=3.876$ grains poids de marc .
Spain. Diamond carat $=4$ Castilian grains .
Portugal and Brazil. Quilate $=4 \cdot 132$ granos peso de mardo.
Italy. Bologna carat
,, Florence carat
,, Turin carat
,", Venice carat
Egypt. Alexandrian kerat
Arabia. Mokha karat
Persia. Kirāt = 16 una
India. English diamond carat . . .
Java, Borneo, \&c. A Dutch carat of 4.096 as

Grains	Mils.	Milgrs.
3.168	$7 \cdot 250$	205.3
$3 \cdot 200$	7:323	$207 \cdot 4$
3.171	7.247	205.5
3.18I	7.280	206.I
$3 \cdot 165$	7.243	205. 1
3.165	$7 \cdot 243$	205.1
3'177	7.270	205.9
3.085	7.060	199.9
3.176	$7 \cdot 268$	$205 \cdot 8$
2.910	6.660	188.6
3.033	6.941	196.5
$3 \cdot 295$	7.543	213.5
3.196	$7 \cdot 314$	207. 1
3.094	7.081	$200 \cdot 5$
2.959	6.772	191.7
3	6.865	194.4
3.232	$7 \cdot 397$	$209 \cdot 5$
3.168	$7 \cdot 250$	205.3
3.038	6.952	196.9

For China, Japan, and the Chinese Archipelago, see fan, fanam, or candarin.

LAPIDARIES' WEIGHT-UNITS

- continued.

Values of the gonj or ratti.
Bombay gonza $=6$ chow
Puna gunja $=2$ wat
Ahmadnagar, Chandor, \& Nassick gonja
Bombay ratti $=13 \frac{3}{4}$ takka $=16$ ana.
Ahmadabad ratti ${ }_{\text {Aurangabandar ratti }=24 \text { mūn }}$
Aurangabandar ratti $=24$ mūn
Calcutta ratti $=4 \mathrm{dhān}=8$ nelli $=1 \dot{6}$ pan $-~$ kho .
Calcutta pearl ratti or pakka ratti . ${ }^{\circ}$.
Dehli jewellers' ratti
Jaulna ratti $=2$ wheat grains $=4$ urd-grains $=8$ rice grains

96
Malwa ratti $=8$ chaul
Patna ratti
Sindhi ratti $=24$ mūn 72
," pearl ratti $=8$ hubla
Surat ratti $=6$ chauwal 96
," pearl ratti $=20$ vassa
Values of the fan, fanam, or candarin.
Bangalur fanam or cantarai $=4$ grumatri
$=16$ paddy grains 30
Ballari fanam or cantarai . . . 30
Calicut fanam, $\mathrm{I} \frac{1}{2}$ to a miskāl
Cochin fanam 3I
Pondicheri fanam = 16 nelli . . .
Masulipatam chunam or fanam . . 30
Madras. Mangal = 16 ana.
Sumatra. Bencoolen fanam or candarin. ,, Natal fanam or candarin ,, Padang fanam or candarin
Moluccas. Timor fanam or candarin
Sulu Islands. Chusuk or candarin
China. Fan, or candarin $=10$ li or cash
Japan. Fan (old value) $=10$ ring
Modern value of fan $=10$ ring .
Madagascar. Nanke .

	Grains	Mils.	Milgrs.
100	1 790	$4 \cdot 095$	116.0
96	1.997	$4 \cdot 570$	129.4
96	1.960	$4 \cdot 485$	127°
	3	6.865	194.4
96	$2 \cdot 015$	$4 \cdot 611$	$130 \cdot 6$
72	$2 \cdot 486$	$5 \cdot 689$	161.1
100	$2 \cdot 246$	$5 \cdot 140$	145.5
	2.825	6.465	183.1
	- 1.250	$2 \cdot 861$	8 I -
96	I'923	4.401	124.6
	1 979	4.529	128.2
	3.050	$6 \cdot 980$	1976
72	2.486	5.689	16ı.1
	16	36.616	$1036 \cdot 8$
96		4-469	126.6
	2.846	6.513	184.4
3030	5.870	$13 \cdot 433$	$380 \cdot 4$
	$5 \cdot 875$	$13 \cdot 445$	$380 \cdot 7$
	5.800	13.273	$375 \cdot 8$
3 I	$5 \cdot 796$	$13 \cdot 264$	375.6
	5.871	13.436	$380 \cdot 4$
30	5.968	13.657	$386 \cdot 7$
		$13 \cdot 731$	$388 \cdot 8$
	$6 \cdot 380$	14.601	413.4
	$5 \cdot 840$	13.365	$378 \cdot 4$
	6.360	$14 \cdot 555$	$412 \cdot 1$
	5.800	13.273	$375 \cdot 8$
	$5 \cdot 833$	13.349	378.0
	5.798	13.269	$375 \cdot 7$
	5.688	13.217	368.6
	$5_{5} \cdot 824$	$13 \cdot 328$ 11.442	377.4
	5	$11 \cdot 442$	$324{ }^{\circ}$

CHAPTER VI.

ON SCIENTIFIC SYSTEMS.

While a commercial system of measures has for its principal object the convenience of the general public and of the wholesale and the retail tradesman, in buying and selling any saleable commodity, and in measuring, weighing, and subdividing it in accordance with a rigid unalterable set of commercial units of known value and fixed ratio, a scientific system of measures on the contrary may be almost independent of retail trade-convenience, and, comparatively speaking, unsuited to purposes of ordinary and frequent measuring and weighing. Thus, while in a commercial system some recognised suitable unit with an appropriate mode of subdivision must be forthcoming at almost every point where any brench of trade may require one, such a heavy demand is not made on a scientific system, which is sufficiently complete in this respect, if it supplies only one unit of length, one of surface, one of capacity, and one of weight, in accordance with the commercial measures of the same country.

A scientific set of measures is made use of by a comparatively very small section of the public, scientitic and professional men, who are nearly indifferent to the units of retail trade, the pecks, pots, and pounds, and the quarters, eighths, and sixteenths of perpetual daily
weighing and measuring ; in fact, for the purposes of a certain number of scientific men, a set of scientific measures belonging to any foreign nation, and totally disconnected with their own national commercial system, might be quite suitable, provided it was convenient in other respects. For professional men, however, who form a connecting link between scientific men and the general public, it is an absolute necessity that the scientific system shall have the small amount of accordance with the commercial measures of their own country already mentioned.

The second distinctive element in a scientific system is that, as convenience of calculation on an extensive scale is more important than facility in measuring, weighing, and subdividing, the decimal mode of subdivision, with decimal multiples and submultiples, becomes as necessary in it as a binary or a mixed binary-decimal subdivision is in commerce; for the professional man wishes to calculate with facility from the ounce to the bushel, from the pint to the ton (using commercial units for illustration) or from the gallon to the acre and the inch, while the retail tradesman and those dealing with him calculate in a very limited range peculiar to one single trade.

In the third place, the scientific and professional man is contented with units set far apart, such as hundreds or thousands of the next lower unit, while the tradesmen requires his commercial units at comparatively short distances, generally counting and dividing merely to quarters, eighths, twelfths, or sixteenths before coming to another commercial unit of distinctive name and value, from which he may make a fresh start in his small calculations.

The fourth distinctive element in a perfect scientific system is that the standard units, though few in number, should be absolutely correct and truly determined, most especially in the connection between the standard unit of capacity or cubic measure and the standard unit of weight ; any defect in this respect being liable to vitiate the deductions and calculated results of scientific men, many of which are based on very small and excessively meagre data, and are thus liable to superimposed and cumulative error from such a cause. As regards the connection between the standard unit of cubic measure or capacity, which in a scientific system are identical, and the standard unit of weight, there is no doubt that the method of comparison by distilled water at its utmost density-that is, at a temperature of about 39° Fahren-heit-has been accepted as the most convenient mode in principle, and that most commonly recognised as the best at present. Whether it really is so or not may be doubtful, but the determination of this point should rest with special experts. When the investigations and labours of scientific men have arrived at a preferable liquid of uniform density, at a solid of uniform density preferable to a brass or platinum weight, and at an improved mode of conducting scientific comparisons of weight and capacity on a far larger scale than is at present usual, an immensely higher degree of exactitude will be attainable. At present only one of these three important desiderata has been arrived at in the form of the quartz weights introduced by Steinheil.

There is, however, another desideratum that would give a stimulus to the development of all the others ; it is that the governments of civilised countries should depart from the old methods of accepting gratuitously
the labours of scientific men, or of nominally and tardily rewarding the latter by some official post, the retention of which may require courtierlike finesse and intrigue rather than skill. When the whole system of charitable patronage of scientific labour and of appropriating foreign results is swept away, and when substantial encouragement replaces detraction, more rapid progress may be expected in this branch of science.

As regards actual scientific systems of measures, very few may be said to exist at present. In ancient times commercial measures were formed on a scientific basis, were developments from a set of scientific units, or derived from a scientific system. The ancient Babylonian, Egyptian, Indian, the Hashemic, Ptolemaic, Greek, and Roman systems, were all scientific, being based on a cubit or a foot, and the weight of water or of wine contained in a cubic cubit or a cubic foot.

Ancient Scientific Systems.

The earliest of these ancient scientific systems, of which any mention is made, appears to have been Chaldæan; and it is very probable that the earliest of the Egyptian and Phœnician systems were Chaldæan by origin. Both decimal and sexagesimal modes of subdivision were employed at a very early epoch ; but the systems were probably very simple, and unembarrassed by an infinity of commercial requirements ; a cubit once determined and accurately fixed, its square, its cube, and the weight of water, wine, or grain in its cube, were four standard units of length, surface, capacity, and weight ; the rest was probably nearly left to the habits of the people. The cubits themselves were very various, and
perhaps changed with each dynasty as the foot does in China to the present day; but there is also sufficient reason to suppose that some of these ancient cubits were geodetic, or based either on a theoretical geodetic unit, or a measured terrestrial arc ; some were historic, and venerated for their antiquity ; and others were carefully systematised, so that the submultiples of the weight-units dependent on them might be in convenient accordance with monetary and commercial requirements. About this purely-cubitic period there is little direct evidence, its probable existence can only be inferred from analogies that appear conclusive.

At a later period, the foot, diversely derived from natural, royal, and sacred cubits, became the recognised standard unit ; and the same principles were applied to it. The talent or foot-weight of water, wine, or grain was the unit of weight, and was divided either sexagesimally into manáh or pounds, or into fiftieths and hundredths in the decimal mode. The ancient weights, discovered by Layard (see Layard's 'Nineveh and Babylon') and now existing in the British Museum, afford ample evidence of the modes adopted in this period. This historic method of dealing with the foot and the talent as standard units has never yet been improved upon, and is as applicable in England in the present day as it ever was. (The revival of the English foot-weight as a legal unit in 1859 affords evidence of this.) It has unfortunately been considered fashionable to decry this ancient system as unscientific, and to overrate the importance of the modern French system from a scientific point of view. No valid reason can be urged against the existence of carefully computed and ingeniously arranged metrical units and systems at the earliest
periods, when the Chaldæans, the Phœnicians, and the Egyptians were the civilised races. Ignorance and barbarism may be imputed to them, but cannot be proved except as regards the masses. Of our own ignorance and barbarism at the present day as regards an infinity of subjects there is not the slightest doubt ; our ignorance also extends to not knowing enough about the ancients, and their scientific doings (which were necessarily secluded), to be able to say what they could not do ; it is hence safer to assume that they could do about as much as ourselves in most matters, although probably in very different ways, and with very different means and appliances.

When we reflect on the vastness of the ancient Tyrian mole, in comparison with our puny breakwaters; on the stupendous Egyptian pyramids and monoliths compared with our buildings and fragmentary monuments ; on the 2o-ton shot used by the Turks at the siege of Byzantium, and not yet attempted by ourselves, and on many other similar or corresponding facts, we cannot but conclude that skill of a high description must have been employed in such matters, and that the vastness and grandeur of scale was not due to a thoughtless or coarse aggregation of small things.

Comparatively uncivilised races at the present day can achieve wonderful results with hardly any visible appliances or mechanism ; travellers meet with many such cases, of which one may be quoted in illustration. After the Burmese war, a very heavy bell was taken as a trophy, lowered from a pagoda, and, probably from mismanagement, never arrived at the ship; it was left imbedded on the muddy shore ; the English could not move it. One day a Burmese ecclesiastic asked if he
might have the bell, as the English apparently did not want it ; he was informed that he might take it, if he could ; the next morning the bell was hanging in its former place at the pagoda.

Can we reasonably believe that the Phœnicians and Chaldæans were less skilful than the Burmese ?

As regards geodesy and astronomy in ancient times, it is possible that the masses may have considered the stars to be holes pricked through a concave, and the earth a plane bounded by an immensity of ocean ; but the enlightened priests, chiefs, and astrologers could not have had such ideas. The ruins of enormous observatories in India prove that angular observations must have been made with very minute accuracy, even though verniers and micrometers may have been wanting. The knowledge of cycles, the Chaldæan Saros, the Indian Vrihaspati Chacram or cycle of Jupiter, and the Indian very correct knowledge of lunar motions, were based on actual and extended series of astronomical observations. Yet a large number of persons at the present day would not hesitate to assert that 'black people, without even a telescope, could not possibly know much about astronomy.'

Some corresponding argument is also used to prove that the ancients could not measure a geodetic arc, nor even weigh or measure anything with precision. The following is one :-
'It is obvious that without a thermometer or other' ' adequate means, and without a barometer or knowledge' ' of pressure and density of air, all weighings and measur-' ' ings must have been wanting in scientific precision.'

The want of uniformity in the battered specimens of ancient weights and measures that now exist is also
brought forward as an argument against precision in early periods. Yet how would a few stray unselected specimens of English units, Anglo-Saxon, British, early Elizabethan standards (condemned as inaccurate), Georgian and Victorian, appear to anyone two thousand years hence ?

It is quite true that the appliances and means employed for many purposes in ancient times are wholly unknown to us. The ancients and their astrologers had, however, always the privilege of choosing a lucky moment and a secluded place for their operations ; their moments and their places and conditions may have been well selected, so as to secure uniformity of temperature as well as other objects ; they may also have had some superior knowledge about the animal and the vegetable world which could be utilised in a way rendering many of our present appliances quite unnecessary within certain limits. Also, by employing very large units, they may through them have arrived by some process of their own at accurate submultiples with quite as much accuracy as is now done with small units and minute instrumental readings.

There is therefore no more cogent reason for disbelieving the powers of the ancients to measure a geodetic arc than to compute the cycle of Jupiter.

It has been believed for a long time that the Great Pyramid, though probably a tomb, was also a perfect storehouse of standard Egyptian units of measurement, length, surface, capacity, and weight ; and that the units of length were also formed on a geodetic basis. Many have taken measurements there, and their deductions differ widely ; yet this would hardly be sufficient ground for condemning the opinion. It is far more probable
than otherwise that any constructors would under any circumstances build a mass of that description in accordance with, and in some definite ratio to, the units of measurement used by them ; and this probability would hold independently of any presumed object in forming a permanent record of those units for future reference. It would also be more convenient to the constructors that certain standard units should be adhered to throughout the work.

The discrepancies in the measurements of the base of the Great Pyramid made at various times may be easily accounted for; the base is irregularly covered up by accumulations of sand, the visible base is therefore a very fluctuating length, and even if shafts be sunk at the corners, and horizontal measurements made between them, there is yet then some doubt as to which is the real exact base, or where the original foundation ceased.

The astronomer Ptolemy determined the base to be 600 Phileterian feet, $=690$ English feet, and to be also $\frac{1}{500}$ of a degree of the meridian ; the most modern measurements by the English Ordnance Surveyors made the base about 760 English feet, or nearly $\frac{1}{480}$ th of the mean degree.

Taking this latter as correct, a side would then be nearly an eighth of a minute, and the sum of the four sides half a minute; so that there still remains as much reason as ever to believe that some geodetic unit was used in the construction of the Great Pyramid ; and perhaps also more than one.

Ancient authors assert that the length of one of the sides of the Great Pyramid was 500 cubits; presuming these to have been natural cubits from which the natural Egyptian, Phœenician, and Olympic foot was derived by
taking two-thirds of it ; the natural cubit, $1 \cdot 520$ English feet, and the natural foot, roi 3 English foot, must both have been geodetic units. Taking another view of the matter, and supposing that a sacred cubit was the unit adopted, of 2.III English feet, the length of the base would be nearly if not exactly 360 sacred cubits; a species of sexagesimal stadium in harmony with ancient Chaldæan multiples, and corresponding to the Chinese li of 360 paces as regards mode of formation ; in that case the sacred cubit may also have been geodetic in origin.

It is beyond the scope of this work to enter deeply into ancient measures; the reader is hence referred to works on ancient metrology, and more especially to Piazzi Smyth's book on the Pyramid for further information regarding Pyramidal units. The object of the foregoing digression has been simply to show that the ancients may have been capable of producing accurate, scientific, and geodetic units in very early periods of the world's history.

Between the Pyramidal epoch and the later Arab or Mosletn period, several metrical systems, some of which were scientific reconstructions, and others mere rearrangements, were adopted by various nations at different times and places.

The latest of these ancient systems recorded was the Arab, or Almamun system, of the fifth or sixth century, since which time, until nearly the present, ${ }^{1}$ the nineteenth century, not a single new scientific weight-unit appears to have been formed; while the whole of the commercial weights and measures of the world during that period apparently consisted of the débris of ancient scientific systems.

Modern scientific systems, of which there are very ${ }^{1}$ The kilogranme dates from 1795.
few, and these confined to Europe, are necessarily based on some existing standard units of the country.

The most perfect of these, taken generally, is the metric system of France, nominally dating from December 9, I799, as regards the acceptance of its standards by the nation as a scientific system.

The French Metric System.

The basic unit of this system, termed the mètre, is a slightly enlarged half-toise, half-fathom, or yard of the old French system of commercial measures, and was at one time imagined to be the ten-millionth part of the meridian-quadrant passing through Paris, as deduced from French geodetic measurements made in 1740 . Later investigation proved the incorrectness of the mètre as a geodetic unit, and thus placed it in the category of arbitrary units, the prototype or primary unit being the mètre des archives, made by Lenoir at Paris, in or about I799.

The unit of surface of the metric system was the are of 100 square mètres, and the unit of cubic measure, the litre, which was nominally the loooth part of a cubic mètre, though at a later date it lost its purely scientific and theoretical value by becoming a measure containing a kilogramme weight of distilled water at 4° Centigrade, while the measure itself was supposed to remain at the temperature of 0° Centigrade. This unfortunate departure from uniformity of temperature for the system is a most serious defect annulling practical certainty, and forcing a recourse to calculated adjustment.

The nominal basic unit of weight is the gramme, but the real unit is in actual fact the kilogramme, of 1,000 grammes, as exemplified in the kilogramme des archives
made at Paris about 1799, representing its legally defined value, the weight in vacuo of a cubic decimètre of distilled water at 4° Centigrade.

The scientific value of this prototype is open to much doubt ; its density cannot be directly determined from fear of damage, while the calculated weight of a cubic decimètre of water, according to Stampfer in I830, was 999.653 grammes, and according to Kupffer in i84I was 999.989 grammes.

The French basic units, though small compared with the cubic cubits of ancient times, thus appear to be particularly unfortunate in their practical development, both as regards geodesy and adherence to original intention in every respect. The other units of the system are, as may be seen in the subjoined table, mere decimal multiples and sub-multiples of these four basic units; their names being well arranged with Latin and Greek affixes, so as to denote their positions in the scale.

Though decimalisation may thus be easily applied to any arbitrary units, and corresponding advantages may be obtained to a far higher degree by a more exact and accurate scientific management, the fact remains that the French and the Chinese and Japanese systems are the only ones in which it is actually carried out and fully applied at the present day.

In the period from 1812-1840, when the French mesures usuelles were the commercial measures used in France, the metric system formed a nearly perfect scientific system for French professional and scientific men, not only on account of its simplicity and its decimal advantages, but from its convenient relation to the commercial measures then used in France. This advantage would not accrue from the adoption of the metric system
in England for the purposes of the professional and scientific man as a purely scientific system; nor would the same advantage be obtained in any country where the ordinary commercial measures are not metric.

Excellent, then, as the metric system is, as a scientific system under certain circumstances, it would be entirely inapplicable under others; decimalisation on local or national commercial units, then, affords the only convenient alternative for the scientific and professional man in many countries, including England.

The English Scientific System.

The English scientific system, though incomplete and unpretentious, may yet be said to exist. It practically consists in a selected few of the principal commercial English units, reduced from the commercial standard temperature, 62° Fahrenheit, to the accepted scientific standard temperature, 32° Fahrenheit, thus corresponding to the metric system in this respect, and thereby obtaining the advantage of maintaining the correct connection between the units of capacity or cubic measure and the units of weight.

It may be here noticed that under the conditions applied by law to English commercial measures, which are that the units are correct at a normal temperature of 62° Fahrenheit in air under a barometric pressure of 30 inches, the important advantage of a perfect relation of weight to volume theoretically obtained in the metric system either does not exist ; or if it does, is different.

This will become apparent on noticing the different values of the weight of an English cubic foot of water under different conditions according to such information as is at present available.

Values of the English Talent or Foot-weight.
At 39° Fahrenheit in vacuo, according to
Miller, 'Phil. Trans.' 1856 . . 62.4245 lbs .
At 62° Fahrenheit 62.3548 lbs .
At 62° Fahrenheit, bar. $30^{\prime \prime}$, the legal or commercial English value determined by Shuckburgh in 1798 . . . 62.3210 lbs .

If, too, the values of a cubic decimètre of water be considered in the same way, they are, according to Chisholm (see page 20 of his work on the 'Science of Weighing and Measuring,' London, i877):-

Values of the Cubic Decimètre of Water.
Theoretic French value at 39° Fahrenheit in vacuo, against brass weights at 32° 1,000 grammes.
French value at 62° Fahrenheit, baro-
meter $30^{\prime \prime}$. 998.717 ",
According to the English ratio under the same conditions 998.680 "

The causes of this marked variety in value is not only the varying density of water at different temperature, but the loss of weight by displacement of air, which is greater in the case of water than in that of its brass counterpoise-an important consideration, as the weight of a cubic foot of air at the temperature 62° Fahrenheit with the barometer at $30^{\prime \prime}$ is reputed to be 531.33 grains.

There can be little doubt that both the English commercial value of the foot-weight, determined by Shuckburgh, and the theoretic French value of the decimètre-weight are rather inaccurate, thus producing two sources of discrepancy in the comparison of French and English weight by volume ; but apart from these two
causes the alteration in the relation of weight to volume due to departure from the scientific standard temperature of comparison and from the vacuum is clearly illustrated by the above figures.

In point of fact such figures are merely computed, as it is obviously a practical impossibility to weigh a vessel of water at one fixed temperature while the water contained in it must have another fixed temperature ; hence the necessity for a thorough re-investigation of the matter by scientific men, and probably too the desirability of fixing some one single temperature, perhaps that of the extreme density of water (about 39° Fahrenheit), as the single normal temperature for scientific standard purposes in Europe generally.

In the meantime, and with the object of maintaining the accepted relation with metric standards, it may be best to apply the French ratio in the English scientific measures and weights, and thus avoid one of the two above-mentioned sources of complication.

The English scientific units consist of the inch, foot, and yard, the square inch, square foot, and square yard, the cubic inch, cubic foot, and cubic yard, and the inchweight, foot-weight, and yard-weight, with their decimal multiples and sub-multiples to any required extent ; these form a complete series which, if taken at the scientific standard temperatures 32° and 39° Fahrenheit, answer most of the purposes attained by the metric system, without adopting the pecks, gallons, and pounds of the tradesman.

When it is desired to compare quantities expressed in scientific units with quantities expressed in commercial values of units of the same name, some care is necessary to avoid error or confusion. To take the single case of a
quantity expressed in inches, for instance 2 scientific inches at the temperature 32°, which has to be reduced to commercial inches at the temperature 62°. The original scientific inch when expanded to the extent afforded by this increase of temperature becomes $=1.0003$ of its former value taken rigidly, hence 2 scientific inches $=2.0006 \mathrm{com}$ mercial inches ; correspondingly also 2 commercial inches $=\mathrm{r} .9994$ scientific inches.

For all ordinary purposes, a simple percentage of reduction may be applied in such numerical reductions as follows :-
I. In linear scientific units, at $32^{\circ}, \mathrm{I}=\mathrm{I} \cdot 00029$ commercial units.
2. In superficialscientific units , $\mathrm{I}=\mathrm{I} \cdot 00057$,
3. In cubic scientific units „ $I=I .00086$ "

Some corresponding reduction for weights at different temperatures would also be strictly necessary, were it not that the ordinary mode of comparing weight, namely, by balance, practically nearly annuls any resulting effect of temperature ; the actual effect of temperature and gravity on weight is hence most frequently ignored, and an ounce at the equator is thus placed in mechanical identity with an ounce at the pole.

The values of the scientific units in metric measures are given in the table following this section ; the scientific values of the furlong and mile and of the square furlong and square mile have been added to make up an obvious deficiency by the most simple means, though a further improvement as regards itinerary and land-measure may effect desirable change in the future.

The units of scientific weight have been arranged according to the best of the author's ability with the view of simple decimal systematisation.

The English Decimal Scientific Series.

Taking the three scientific units of weight at 32° Fahrenheit, the inch-weight, or weight of a cubic inch of water is about 0.578005 commercial ounce, and neither it nor its decimal multiples or sub-multiples have any simple convenient or even any approximate relation. to the English commercial units of weight ; this series is consequently discarded as unnecessary and is therefore omitted in the table. The corresponding weight of a cubic yard of water is about 15.04877 commercial hundredweights, and both it and its decimal multiples and sub-multiples are similarly out of accordance with commercial units, and hence are also rejected.

The weight of a cubic foot of water has, however, been a legalised standard unit of weight since the year 1859, and its legally declared value at 62° Fahrenheit, barometer $30^{\prime \prime}$, was 62.3210 pounds; taking then the correct value of this unit at 32° Fahrenheit as 62.4245 pounds, or 998.79 commercial ounces, its relation to the ounce of commercial weight is tolerably well-defined and more convenient for purposes of calculation and comparison with commercial weight than any other unit that might be proposed. Denominating this footweight of water at 32° Fahrenheit in accordance with ancient nomenclature, it is an English talent, in the same way as the Greek $\tau \alpha \dot{\lambda} \alpha \nu \tau o \nu$, or talant, was the weight of a Greek or Olympic cubic foot of water.

Decimalising on this talent at intervals of 1000 (which are sufficiently small for scientific purposes, and extending the decimalisation to include every possible requirement beyond the two extremes of the com-
mercial ton and grain), the thousandth part of the English talent is 0.99879 commercial ounce, thus varying from it by only 0.12 per cent., and may hence be termed a scientific or a millesimal ounce. The thousandth part of the scientific ounce, here named a mil, is 043697 commercial grain, or about $\frac{4}{10}$ ths of it ; and if a very small unit be required as is sometimes the case in monetary weight and in scientific matters, the thousandth part of the mil, termed a doit, is 0.000437 of a grain, or very nearly a fifth of the now obsolete English doit, which was $\frac{1}{480}$ th of a grain. A unit of 1000 talents, to which the hitherto appropriated term thou-sand-weight might be applied, having a value of 27.868 tons, and just exceeding the largest known commercial unit of weight, completes this decimal series of scientific measures of weight. It is actually a rod-weight or weight of a cubic rod of water.

> Units of Water-weight, at 32° Fahrenheit, based on the weight of an English cubic foot of water.
I Rod-weight or thousand-weight
I Foot-weight or talent $\}=1000$ talents or foot-weight.

I Scientific ounce $=1000 \mathrm{mils}$. I Mil $=1000$ doits.

This small category has thus been newly arranged and put in definite form to suit professional purposes and wants until such time as the Government of the country, aided by scientific investigation, makes some move in this long-deferred matter, and completes the English scientific series in some way by permissive legal enact-
ment. It will perhaps be noticed by professional men that the advantages of the above units are :-
r. That they are based on a recognised legal unit.
2. That they are transmutable into commercial units through the ounce by a reduction of $O .12$ per cent.
3. That they are purely decimal, and evenly spaced at intervals of IOOO so as to cover the requisite range.
4. That conversion from weight to volume, and from volume is practicable with them as with metric units.
5. That the actual weight of any body of known volume and density is easily ascertained. For example, the weight of two cubic feet of wrought iron, having a specific gravity of 7.78 , is 15.56 talents.
6. That the reduction of units of pressure in which these weight-units are applied is as easily effected as with metric pressure-units.

Taking the English scientific system as a whole, with the addition of the decimal weight-units, it appears practical, rational, and effectual ; it is, however, not yet purely decimal throughout, as the inch-units and yardunits of length, surface, and cubic measure, entering so largely into trade-matters in direct connection with professional business, cannot be entirely dispensed with for a very long time to come. When such a period does arrive, the system may be reduced to a simply decimal one based on the foot alone; but even then some new itinerary and superficial units will be required to take the place of the incongruous furlong of 220 yards, the mile of 8 furlongs, the square furlong of 10 acres or 48400 square yards, and the square mile of 64 square furlongs or 640 acres.

At such an epoch, extended decimalisation on the
foot and square foot will probably be necessary ; and the subjoined mode will probably be inevitable :-

Linear.-The foot.
The rod = \quad io feet.
The chain (Ramsden's) $=$ roo feet.
The cable $=$ rooo feet.
The league $\quad=100$ chains $=10000$ feet.
Superficial.-The square foot.
The square rod $\quad=100$ square feet.
The square chain $\quad=10000$ square feet.
$\left.\begin{array}{l}\text { The square cable or } \\ \text { century }\end{array}\right\}=$ Ioo square chains.
The square league $=10000$ square chains.
Also, if the principle adopted in the weight-units be also applied to cubic units, they would become thus :-

Cubic measure.
$\left.\begin{array}{l}\text { I cubic rod } \\ \text { or mass }\end{array}\right\}=$ nooo cubic feet.
1 cubic foot $=1000$ fluid ounces
I fluid ounce $=$ rooo fluid mils . . The scientific ounce.
ı fluid mil $=$ ıo00 fluid doits . . The mil $=1000$ doits.
The proposed league of two old London miles or 10000 feet, which is nearly 3 kilomètres, though convenient in value, is open to a slight objection as regards its name, but as the ancient English league of three miles is very nearly practically obsolete, and has long ceased to be a legal unit, any confusion arising from this cause is hardly probable, while the necessity for adopting some name indicative of itinerary measure is sufficiently evident.

When the decimalisation of the English scientific system thus becomes perfect, it will be as convenient for
the English scientific and professional man as the French metric system now is for the French scientific and professional men ; and will also be in correlation with English commercial measures. There is, as far as can be ascertained, no reason for deferring the adoption of the simplified English scientific system ${ }^{1}$ to any future time, apart from the need of a nominal retention of the inch-units and yard-units. They are hence used throughout the tables in this book.

Other Scientific Systems.

While in France a scientific system has now been long in use (since 1800), and in England a scientific system is just barely complete, in other European countries local or national scientific systems are either entirely wanting or are merely partial and incomplete, and are sometimes replaced by foreign measures, more frequently by the French metric units.

The partial and incomplete scientific systems are, however, worthy of some notice, although they should more properly be considered as mere attempts. It may be urged that almost all nations possess linear, square, and cubic measure based on some one or two units, such as a foot, or an ell or cubit, and that so far a scientific system generally exists; but the incompleteness or non-existence of a scientific system precisely consists in the absence of a series of weight-units in simple correlation with cubic units and measures of volume. Such a deficiency is due to the fact that European commercial systems of measure are mostly based on two totally independent units, one of length and one of weight.

[^17]Two exceptional cases may be noticed, the Danish, in which the Rheinfuss is the linear unit, and the pound is $\frac{1}{62}$ nd part of the cubic foot of water, and the Prussian in which the same Rheinfuss is the linear unit, and the pound is $\frac{1}{66}$ th of the cubic foot of water at 15° Réaumur or $65^{\circ} .7$ Fahrenheit; but in neither of these cases does the ounce fall sufficiently near the loooth part of the foot-weight of water to admit of small adjustment and the adoption of a decimal series on that basis, the Rhein foot-weight being equal to 992 Danish ounces, or to I 056 Prussian ounces, any adjustment involving a change of nearly I per cent. in the former case, and of 5.6 per cent. in the latter ; compared with which the present English discrepancy of about O.I 2 per cent. is a trifle.

The Swedish commercial system of measures, so perfect in every respect except as regards the whole of the weights, would be capable of a superimposed scientific system only by a complete rejection of these ; in that case, if a new pound $=\frac{1}{50}$ th of the Swedish footweight of water were adopted (which would be about 523.26 grammes), a decimal series of weight-units might be formed for scientific purposes, which would then hold a most convenient correlation with local commercial measures and weights throughout.

At present there exists merely an incomplete local decimal system in Sweden. In length and distance the fot, or foot, is divided decimally, and the multiples of the fot are the stöng, or rod, of io feet, and the ref, or chain of 100 feet, beyond this there is a mil or league of 360 chains. In surface, the measures are the square foot, the square stöng $=100$ square feet, and the square ref $=100$ square stanger. In cubic measure, the cubic
foot $=1000$ cubic tum, the kannar $=100$ cubic tum, and the cubic ell=4 cubic feet. In weight, there is no weight-unit in correct correspondence with cubic measure and it is in this respect that the system fails from a scientific point of view. The commercial skålpund, apparently an arbitrary unit, is the basis; its submultiples are the ort $=\frac{1}{100}$ skålpund, and the korn $=\frac{1}{100}$ ort ; its multiples, the centner $=100$ skålpund and the nylast $=100$ centner ; the arrangement being centesimal. The system itself is applied at the standard temperature adopted by the Swedes for commercial units, namely 15° Celsius. The centesimal subdivision, so convenient in surface measures, is a defective mode of arranging either cubic units or weight-units, which, for scientific purposes, should be arranged in strict correspondence, either decimally or millesimally.

The Russians, not possessing any distinct scientific system of their own at present, more frequently adopt French units in scientific matters; and it seems as difficult to forecast the future of Russian scientific measures as to prophesy their future internal and political development. In commercial measures, they possess a series of units Oriental or semi-Oriental by origin; these, by the order of their most practical and renowned Peter the Great, were modified slightly to be in accordance with English units, so that the Russian foot and the English foot became identical. One might imagine that the Russians would adhere to this principle in the future development and systematisation of their measures.

Since that time, however, a semi-French régime, accompanied with an assumption that everything French, from corsets to kilomètres, was highly civilised, has held
temporary sway in that country ; this was carried so far that most Russians of the higher classes spoke French and were comparatively ignorant of their own language ; among the lower classes the revolutionary and communistic ideas of the French became a sort of propagated gospel, taking various forms of Nihilism. At a later period these national follies were counteracted to a certain extent by German proclivities, while lastly the most recent tendency has been towards Slavonism, local and national development of the purely Slavonic branches of the Russian nation. Possibly the Finnish Ugrian and true Russian portion of the nation may, at some period, reject the Slavonic idea and take their turn at preponderance ; or perhaps the nation may revert to and stand by the principles of the time of Peter the Great. In the meantime a curious mixture of ideas seems to reign, and the same holds true in the measures, where the Oriental arsheen and sasheen exist side by side with the Anglo-Russian foot and a werst that is an approximate kilomètre, though by origin an Oriental and a Persian unit, about one seventh of a Persian farsakh.

Probably the best scientific system for the Russians would be the English decimal scientific system, based on the international foot.

Among remaining European nations a complete scientific system in correlation with local commercial measures in use seems hardly practicable.

As regards partial attempts at decimalisation and the formation of a scientific system in North-European countries, these have been generally limited. First, the substitution of a decimal inch, tithe or tenth of a foot, for a true duodecimal inch; thus making the subdi-
visions in square and cubic measure strictly decimal. Second, the employment of a ruthe or pole of io feet, so as to make the square ruthe or perch ioo square feet, and afford convenience in surveys and land-measurement, though to a very small extent. Another and an inferior alternative mode of doing this was adopted by introducing a special land-measuring foot equal to the tenth of the local ruthe or pole. Third, the berglachter or dumpflachter system adopted by mining engineers in Germany was a combination of the two last as regards principle, the unit being a lachter, klafter, or large fathom (in Prussia equal to $6 \frac{2}{3}$ feet, in Saxony equal to 7 feet, and in Bohemia 4 ells, which was decimally divided into 10 feet, 100 inches, or 1000 lines, and on this was formed a decimal system of linear, superficial, and cubic measure, distinct from ordinary commercial units, though in correlation with them. But beyond these three things decimalisation was not carried, and never extended into the units of weight, so as to form a complete decimal system. There is no doubt that not only a complete system of scientific measures might have been based on the Rheinfuss of Northern Germany and Denmark and Norway, but that a uniform commercial system for Germany might have been satisfactorily carried out on that basis, without the degradation of borrowing French measures. A sketch of such a German system, as a typical proposition, is given among the proposed systems at the end of this book.

In Southern Europe, an incomplete scientific system was adopted in the kingdom of Naples-or, more properly, the two Sicilies-in April 1840, and lasted until the unification of Italy.

The basis of this system was a geodetic mile, or miglio, equal to one minute of arc of the meridional quadrant ; and the mode of subdivision was principally but not entirely decimal. The scale of linear units was thus:

I $\mathrm{miglio}=700$ canne $=1000$ passi $=7000$ palmi,
and the palmo (corresponding to a foot) was 0.2646 mètre, or about 0.868 foot English; and was divided both decimally into decimi and centesimi, and duodecimally into 12 oncie, 60 minuti and 120 punti.

The scale of surface units was thus:
I moggio $=100$ square canne $=10000$ square palmi, the moggio being nearly 7.0013 ares or 0.69264 rood.

The cubic measures were :
I cubic canna $=1000$ cubic palmi, the cubic canna being about 18.5255 cubic mètres or 653.97 cubic feet.

Beyond this, the system did not go, as apparently the old units of weight, the libbra of 320.76 grammes, the rottolo of $2 \frac{7}{9}$ libbre, the cantaro piccolo of 100 libbre, and the cantaro grosso of 100 rottoli, were retained ; while no new units of weight were adopted; nor, as far as present inquiry reaches, was any attempt made to form any cubicised unit of weight on the cubic palmo.

In Tuscany there were some decimalised units, based on the ordinary palmo of Florence ; they were:
In length, I canna or pertica $=\mathbf{1 0}$ palmi $=\mathbf{1 0 0}$ soldi. In surface, \mathbf{I} pertica quadrata $=\mathbf{1 0 0}$ palmi quad. $=\mathbf{1 0 0 0 0}$ soldi quad. In cubicity, I palmo cubico $=1000$ palmi cubichi.
In weight, the old commercial units unmodified ; the libbra, centinajo, and migliajo.

This system was therefore both non-geodetic and incomplete, while the range of its decimalised units was exceedingly limited, not even arriving at units near either the rood or the furlong.

Such very partial attempts at scientific systematisation, though deserving notice, will not be found classified as scientific systems in the tables devoted to that branch of the subject.

The following tables give the values of the English and the French scientific units in terms of each other, and afford a means of converting quantities without need of multiplication.

See Tables of English

System.

English Decimal
Scien. Values based
on the Foot at 32° Fahr. ${ }^{1}$

0.032809 tithe	0.039371 inch
0.328090 tithe	0.393708 inch
$0 \cdot 328090$ foot	3.937079 inches
3.280899 feet	1.093633 yard
3.280899 rods (Ramsden)	10.936330 yards
3.280899 chains (Ramsden)	0.497106 furlong
$0 \cdot 328090$ league.	0.621382 mile
$3 \cdot 280899$ leagues	6.213820 miles

10.764299 square feet . . . 1.196033 sq. yard
1.076430 square rod . $\quad . \quad 11.960330$ sq. yards
$10 \cdot 764299$ sq. rods (Ramsden) 119.603300 sq. yards
10.764299 sq. chains (Ramsden) . 0.247114 sq. furlong
$0 \cdot 107630$ sq. league
$10 \cdot 764299$ sq. leagues . . . 38.611611 sq. miles
35.316581 fluid-mils . . . 0.061027 cubic inch $353 \cdot 165810$ fluid-mils . . . 0.610271 cubic inch 3.531658 fluid-ounces (milles.) . $6 \cdot 102705$ cubic inches 35.316581 fluid-ounces (milles.) . 61.027052 cubic inches $353 \cdot 165810$ fluid-ounces (milles.) $610 \cdot 270515$ cubic inches 3.531658 cubic feet . . . $0 \cdot 130802$ cubic yard 35.316581 cubic feet . . . 1.308022 cubic yard
35.316581 doits 0.000061 inch-weight $353 \cdot 165810$ doits 0.000610 inch-weight 3.531658 mils 0.006102 inch-weight 35.316581 mils 0.061027 inch-weight 353.165810 mils 0.610271 inch-weight 3.531658 ounces (milles.) . . $6 \cdot 102705$ inch-weight 35.316581 ounces (milles.) . . 61.027052 inch-weight $353 \cdot 165810$ ounces (milles.) . 610.270515 inch-weight 3.531658 foot-weight or talents . 0.130802 yard-weight 35.316581 foot-weight or talents . 1.308022 yard-weight

Scientific Values.

English Decimal Scientific System; of Units based on the Foot

French

Length.		Frenc	h Values.
The foot	$=10$ tithes	3.04	
The rod	10 feet	-0479	mètres
$\left.\begin{array}{l}\text { The Ramsden } \\ \text { chain }\end{array}\right\}$	$=10$ rods	3.04794	décamètres
The cable	$=10$ chains	3.04794	hectomètres
$\left.\begin{array}{l} \text { The (decimal) } \\ \text { league } \end{array}\right\}$	$\left.=\begin{array}{l}100 \text { chains or } \\ 10000 \text { feet }\end{array}\right\}$	3.04794	kilomètres
Surface.			
The sq. foot	$=100$ sq. tithes	9.28997	décim. car.
The sq. rod	$=100$ sq. feet	928997	mètres car.
The sq. chain	$=100$ sq. rods	9-28997	
$\left.\begin{array}{c}\text { The sq. cable } \\ \text { or century }\end{array}\right\}$	$=100$ sq. chains	928997	hectares
The sq. league	$=100$ centuries	928997	kilom. car.
Capacity.			
$\begin{aligned} & \left.\begin{array}{l} \text { Fluid-mil } \\ \left.\begin{array}{l} \text { (Millesimal) } \\ \text { fluid-ounce } \end{array}\right\}=1000 \mathrm{fld} .- \text { doits } \end{array}\right\}=28 \cdot 3153 \mathrm{I} \text { millim. cub. } \\ & =1000 \mathrm{fld} .-\mathrm{mils} \end{aligned} .28 .3 \mathrm{I} 53 \mathrm{I} \quad \text { centim. cub. }$			
Cubic foot Cubic rod	$\begin{aligned} & =1000 \text { fld.-ounces } \\ & =1000 \text { cubic feet } \end{aligned}$	$\begin{aligned} & 28.3 \mathrm{I} 53 \mathrm{I} \\ & 28.3 \mathrm{I} 53 \mathrm{I} \end{aligned}$	decim. cub. mèt. cub.
Weight.			
Mil (Milles.) ounce	$\begin{aligned} & =1000 \text { doits } . \\ & =1000 \mathrm{mil} . \end{aligned}$	$\begin{aligned} & 28.3153 \mathrm{I} \\ & 28.3 \mathrm{I} 53 \mathrm{I} \end{aligned}$	milligrammes grammes
$\left.\begin{array}{l} \text { Foot-weight or } \\ \text { talent } \end{array}\right\}$	$=1000$ ounces	28.31531	kilogrammes
Rod-weight	$=1000$ foot-weight	28.31531	milliers

This system, containing a legal unit of length, surface, capacity, and weight, under legal statute, which allows the use of decimal multiples and submultiples
alone, at Temperature 32° Fahr. in Vacuo, with Corresponding Values.

and merely decimal multiples and submultiples of them, is doubtfully permissible applied to any unit, provided they are so men'ioned.

Conversion Tables for Reducing French Values into English Scientific Equivalents at 32°.

		Mètres into ft., and	
Units Mètres into inches	for corr. dec. mult.	Mètres into yards	
1.	$39 \cdot 37079$	3.28090	1.09363
2.	78.74158	6.56180	$2 \cdot 18727$
3.	$118 \cdot 11237$	9.84270	3.28090
4.	157.48316	13.12360	4.37453
5.	196.85395	16.40450	$5 \cdot 46817$
6.	236.22474	19.68539	6.56180
7.	275.59553	22.96629	7.65543
8.	314.96632	26.24719	8.74906
9.	354.33701	29.52809	9.84270
10.	393.70790	32.80899	10.93633

Square mètres into square inches

1. $1550 \cdot 06$
2. $3100 \cdot 12$
3. $4650 \cdot 18$
4. 620024
5. $7750 \cdot 30$
6. $9300 \div 35$
7. $10850 \cdot 41$
8. $12400 \cdot 47$
9. $13950 \cdot 53$
10. $15500 \cdot 59$

Cubic décimètres into cubic inches

1. $61 \cdot 02705$
2. 122.05410
3. $183 \cdot 08115$
4. $244 \cdot 10821$
5. $305 \cdot 13526$
6. $\quad 366 \cdot 16231$
7. $427 \cdot 18936$
8. $488 \cdot 21642$
9. $549 \cdot 24347$
10. $610 \cdot 27052$

Also for kilogrammes into inch-weight units

Square mètıes
into square feet, and for corr. dec. mult.
$10 \cdot 76430$
$21 \cdot 52860$
32. 29290
43.05720
53.82150

64-58579
$75 \cdot 35009$
86-11439
96.87869
$107 \cdot 64299$
Cubic décimètres
into cubic feet, and
for corr. dec. mult.
0.035317
0.070634
$0 \cdot 105950$
$0 \cdot 141266$
$0 \cdot 176583$
0.211900
$0 \cdot 247216$
0.282533
0.317849
0.353166

Also for kilogrammes
into talents, or foot-weight units

Cubic mètres
into cubic yards
$1 \cdot 30802$
$2 \cdot 61604$
3.92407
$5 \cdot 23209$
6.54011
7.84813
$9 \cdot 15615$
$10 \cdot 46418$
$11 \cdot 77220$
13.08022

Also for
milliers into yard-weight units

Conversion Tables for Reducing English Scientific Values at 32° into French Values.

Ft. into mètres, and

Units In. into centimètres

1. 2.539954
2. $5 \circ 079908$
3. $7 \cdot 619862$
4. Ió1598i6
5. $12 \cdot 699771$
6. $15 \div 239725$
7. $\quad 17779679$
8. 20.319633
9. $22 \cdot 859587$
10. 25 . 39954 I

Square inches into square centimètres

1. $6: 45137$
2. $\quad 1290273$
3. 19.35410
4. $25 \cdot 80547$
5. $3^{2 \cdot 25684}$
6. $38 \cdot 70820$
7. $45^{\circ} \mathrm{I} 5957$
8. 5 ․6IO94
9. 58.06230
10. 64.51367

	Cubic inches into cubic centimètres
1.	16.38618
2.	32.77235
3.	$49 \cdot 15853$
4.	65.54470
5.	8 8 93088
6.	9831706
7.	114.70323
8.	131.08941
9.	147.47558
10.	163.86176
	Also for
	inch-weight units into grammes

Cubic feet into cub. décimètres, and for corr. dec. mul.

$$
28.3 \mathrm{I} 53 \mathrm{I}
$$

$56 \cdot 63062$
84.94594

II 3.26125
141.57656
169.89187
198.20718
226.52250
254.8378 I
283.15312

Also for
foot-weight units
into kilogrammes

Yards into mètres
0.91438
I. 82877
2.74315
3.65753
4.57192
5.48630
$6 \cdot 40068$
7 731506
8. 22945
$9^{\circ} 143^{8} 3$

Square yards into square mètres 0.83610 ェ. 67219 2.50829 3.34439

4•18049
5.01658
$5 \cdot 85268$
$6 \cdot 68878$
7.52487
$8 \cdot 36097$

Cubic yards into cubic mètres
0.76451
I.52903
2.29354
3.05805
3.82257
4.58708
5.35159

6•116io
$6 \cdot 88062$
7.64513

Also for
yard-weight units into millier

The English Decimal Scientific System, at 32°

Scientific Units Commercial Values
Length.
The foot $=10$ tithes . . $1 \cdot 00029$ feet
The rod $=10$ feet . . 3.33430 yards
The chain $=100$ feet . . 6.06236 poles
The cable $=1000$ feet . . o¹5I56 furlong
$\left.\begin{array}{c}\text { The decimal } \\ \text { league }\end{array}\right\}=10000$ feet . . 1889449 miles

Surface.

The sq. foot $=100$ sq. tithes . 100057 sq. feet
The sq. rod $=100$ sq. feet . 0.3675^{2} sq. poles
The sq. chain $==10000$ sq. feet . 0.91880 rood
$\left.\begin{array}{c}\text { The sq. cable } \\ \text { or century }\end{array}\right\}=100$ sq. chains . 22.96991 acres
The sq. league $=10000$ sq. chains . 3.58905 sq. miles

Capacity.

Fluid-mil $=1000$ fluid-doits . 2.07804 minims
Fluid-ounce $=1000$ fluid-mils $\cdot\left\{\begin{array}{l}0 \cdot 99746 \text { fluid-oz. } \\ \mathrm{I} 72903 \text { cub. inch }\end{array}\right.$
Cubic foot $=1000$ fluid-oz. $\cdot\left\{\begin{array}{l}r^{\circ} \circ 0086 \text { cub. feet } \\ 6.2344 \text { gallons }\end{array}\right.$
Cubic rod $=1000$ cubic feet . $37{ }^{\circ} 06892$ cub. yards
Weight.
Mil
$=1000$ doits . . 043697 grain
Ounce $\quad=1000$ mils . . $0 \cdot 99879$ ounce
Foot-weight $\}=1000$ ounces $\quad\{62.42454$ pounds
or talent $\}=1000$ ounces $\left\{\begin{array}{l}\text { I.00166 foot-weight }\end{array}\right.$
Rod-weight $=1000$ foot-weight $\quad 27.86810$ tons

The reduction from and to scientific units merely consists in reduction for cimalisation of the ounce; these unite to form the cubicity of the decimal

In calculations the reductions can be effected by conversion into foot-units

Fahr., compared with English Commercial Values at 62°.

Commercial Units	Scientific Values
Length	
Foot $=12$ inches	0.99971 foot
Yard $=3$ feet	2.99913 feet
Pole $\quad=5 \frac{1}{2}$ yards	- 1.64952 rod
Furlong $\quad=40$ poles	- 6.59809 chains
Mile $\quad=8$ furlongs	0.52785 league
Surface.	
Square foot $=144 \mathrm{sq}$. inches	0.99943 sq. foot
Square yard $=9$ sq. feet.	- 8.99487 sq. feet
Square pole $=30 \frac{1}{4}$ sq. yards	- 2.72095 sq. rod
Rood $=40$ sq. poles.	- 1.08838 sq. chain
Acre $=4$ roods	- 4.35352 sq. chains
Square furlong $=$ ıо acres	. 43.53517 sq. chains
Square mile $=64$ sq. furlongs	0.27863 sq. leagues
Capacity.	
Cubic inch	0.57821 fluid-ounce
Cubic foot $=1728$ cub.inches	- 0.99914 cubic foot
Fluid ounce $=480$ minims	- 1.00254 fluid-ounce
Gallon $\quad=\mathrm{r} 60 \mathrm{fld}$.-ounces	$160 \cdot 40606$ fluid-ounces
Bushel $=8$ gallons	. $1 \cdot 28325$ cubic feet
Quarter $=8$ bushels	. $10 \cdot 26599$ cubic feet
Weight.	
Grain	2.28848 mils
Ounce $=437 \cdot 5$ grains	1.00121 ounce
Pound $=16$ ounces	. 16.01934 ounces
Foot-weight $=62.32 \mathrm{I}$ \% pounds	. 0.99834 foot-weight
Hundredweight $=112$ pounds	. 1.79417 foot-weight
Ton $\quad=20 \quad \mathrm{cwt}$.	. $35 \cdot 88322$ foot-weights

temperature, change of standard, and the slight modification due to exact descientific system, as in the French system at 32°.
and application of a percentage.

COMPOUND UNITS.

The foregoing systems of all sorts, whether commercial or scientific, have been hitherto dealt with merely as systems composed of simple units ; it will be evident, however, that well-arranged systems can only be perfect when they afford convenient compound as well as simple units, and that resulting compound units thus form an important test of a system.

In commercial systems, the principal tests of convenience are, that a unit shall be forthcoming at any part of the series where trade, or any branch of trade, demands it as necessary ; that these units shall be taken as estimated in air at some mean temperature well suited to the country ; that the mode of subdivision shall be in accordance with the habits or forms of thought of the people, either binary or decimal, or a combination of the two ; and that the framework or skeleton of the commercial system shall be thoroughly systematised on scientific principles.

For a scientific system, the principal tests are that it shall be complete and convenient for all scientific and professional purposes, that the units shall be very exactly defined and easily recoverable, that the correspondence or connection between any two units in the system, however far apart or different in kind, shall be exceedingly simple and arranged on a decimal basis ; also that the system shall be in some convenient accordance with the commercial measures of the country.

The extent to which the English commercial system and the just-completed English scientific system ap-
proximate to these conditions has been a subject frequently referred to in the foregoing chapters.

Compound units, however, require a higher amount of simplicity than simple units, as their nature renders them more difficult to manipulate or calculate. Generally speaking, they are regarded as scientific units, and hence should form part of a scientific system ; frequently however, they are taken as commercial units, even when having but slight connection with commercial matters.

Strictly speaking, and taking matters as they should be rather than as they are, the commercial compound units are units compounded of monetary and commercial simple units, while scientific compound units should include all technical compound units and be calculated and dealt with as parts of a scientific system.

The most common type of compound unit is purely commercial, being compounded of a commercial and a monetary unit, and taking the forms, $£_{\mathrm{I}}$ per acre, I shilling per gallon, I penny a pound, and so forth. Now, though coinage and monetary matters generally are beyond the scope of this book, yet when compound units of the above type are so important, it becomes necessary to take moneys of account into consideration.

The following list of the moneys of account and modes of subdivision used in various countries, with their nominal values at par in English money and in Canadian dollars, may be useful for reference, while considering the effect of compounding commercial and monetary units in foreign transactions.

MONEY OF ACCOUNT

Used in Various Countries.

MONEY OF ACCOUN1 - continued.

		Nomin	al	ues at par
Africa-continued.		\$		d.
piastre $=40$ para	. .	0.05		$2{ }_{2}^{1}$
para	.	0.0013		$\frac{1}{16}$
Tunis : piastre $=16$ karub .	. .	$0 \cdot 1167$		$5 \frac{5}{6}$
karub .		0.0073		$\frac{35}{96}$
Morocco : mitkal = 10 wakia	.	0.74		1
waki $=4$ blankil		0.0740		3.7
blankil		0.0185		$0 \cdot 925$
Asia :-				
Arabia : piastre $=80 \mathrm{kavir}$.	. .	0.82	3	5
kavir		$0 \cdot 0103$		
Persia : toman = 10 keran		$2 \cdot 230$		
keran $=20$ shahi		$0 \cdot 1115$		$11 \frac{1}{4}$
shahi $=50$ dinar		0.0056		
India : rupi $=16$ anna		$0 \cdot 48$		
anna $=12 \mathrm{pai}$. .	0.03		$1 \frac{1}{2}$
pai .		0.0025		
Ceylon: Rupi $=100$ cents	. .	$0 \cdot 48$	2	
cent .	. \cdot	$0 \cdot 0048$		$0 \cdot 24$
Burma : tikal, or kyat $=8 \mathrm{mus}$. .	$0 \cdot 48$		
mus $=2$ bai	. .	0.06		3
bai $=8$ rewh	. .	0.03		$1 \frac{1}{2}$
Siam : tikal, or bat $=4 \mathrm{miam}$. .	$0 \cdot 60$		
miam $=2$ fuan	. .	$0 \cdot 15$		$7 \frac{1}{2}$
fuan $=4$ fainun	. .	0.07		$3{ }^{\frac{3}{4}}$
Anam : quan $=10 \mathrm{mas}$. .	0.6667		
mas $=60$ cash	$0 \cdot 0667$		$3{ }^{\frac{1}{3}}$
Philippines and Borneo : peso $=20$ reals	. .			
real $=100$ cents	. .	0.01		$2 \frac{1}{2}$
China : liang = 10 tsin	. .	$1 \cdot 40$		
$t \sin =10 \mathrm{fan}$		$0 \cdot 14$		
$\mathrm{fan}=10 \mathrm{li}$.	. .	0.0140		0.7
Japan : yen $=100 \mathrm{sen}$. .			
$\operatorname{sen}=10$ rin	. .	0.01		$\frac{1}{2}$
America :-				
Dominion of Canada : dollar $=100$ cents	. .	1		
United States : cent ${ }^{\text {c }}$. \cdot	0.01		$\frac{1}{2}$
United States : dollar $=100$ cents	.	$0 \cdot 9863$		${ }_{1}^{2} \frac{5}{16}$
cent		$0 \cdot 0099$		$\frac{1}{2}$
Central America :-				
Mexico: dollar $=100$ cents		1		2
Guatemala				
$\left.\begin{array}{l}\text { Nicaragua } \\ \text { Honduras }\end{array}\right\}$ dollar $=100$ centavos				
$\left.\begin{array}{l}\text { Honduras } \\ \text { Costa Rica }\end{array}\right\}$ dollar $=100$ centavos	. .	$0 \cdot 96$		0
Costa Rica Spanish Antilles				
Spanish Antilles				

MONEY OF ACCOUNT-continued.

South America :-	Nominal Values at par	
		\& s. d.
Colombia : peso, or fuerte $=100$ centavos	0.96	40
Venezuela : peso, or old Prussian thaler $=100$ centavos	0.72	30
British Guiana : dollar = 100 cents	1	4
Ecuador: peso $=100$ centavos	0.96	40
Peru : sol $=100$ centesimos	0.96	4
Bolivia : peso $=100$ centenas	0.74	3
Chili : peso $=100$ centavos	0.90	39
Buenos Ayres: patacon $=100$ centesimos	0.96	40
Uruguay ${ }^{\text {Paraguay }}$ \} peso $=100$ centimes .	0.96	
Prazil : milreis $=1000$ reis .	0.54	2

At some places and countries in Asia and Africa, where there is no established money account, the precious metals, whether coined or not, or in the form of gold-dust, are estimated by weight : thus, weight-units and their subdivision take the place of monetary units and subdivision, in dealing with compound commercial units.

An examination of this list shows the general prevalence of decimalised moneys of account, and as it may be accepted as a principle that compound units are more simple in calculation when the two units from which they are compounded are similar in mode of subdivision, the conclusion becomes inevitable that for purposes of foreign trade generally, decimalisation is the most convenient method for arranging compound units.

It is on this basis that the decimalisation of all commercial measures has been strenuously advocated; but while granting the correctness of the basis, it may be noticed that it also affords a strong argument against the decimalisation of English commercial measures, until the English money of account is decimalised.

On the same basis also the general adoption of French commercial measures has been urged ; if, however, there is any advantage in that, it would only
be when adopting the French monetary system also.

There is a very wide distinction between decimalising English measures and English money and adopting French measures and French money; but whatever opinions may be held as to the advisability of either mode, it seems an inevitable conclusion that the measures and the money should be of the same sort. When the preponderance of commerce is French, it may become advisable to adopt French measures and monetary units in foreign trade ; until that time it is certainly unnecessary, while for purposes of home-trade it would be a mischievous innovation.

The decimalisation of English commercial measures and money together may be advisable; but this seems a matter open to much doubt ; probably the rectification, improvement, and simplification of the commercial measures through small changes, not exceeding fluctuation due to change of temperature, and their rearrangement on a decimal framework, such as that of the English scientific system already described, would serve every required purpose and pressing need at present. The compound units and calculations of cost in connection with foreign trade would, as hitherto, be carried out by clerks and others conversant with the business ; and as far as personal injury goes, neither the number of clerks employed nor the amount of trade done would be much affected under any system of measures and moneys of account.

Should at any time decimalisation become inevitable in both English commercial measures and monetary units, the decimalised framework of the commercial system comprised in the English scientific decimal series can
then serve the requirements of the case, with but few additional units; and the monetary decimalisation will be most conveniently effected by slightly altering the copper money, making the penny $\frac{1}{2} \frac{1}{50}$ th of the pound, and the farthing $\frac{1}{10} \frac{1}{0}$ th of the pound, without altering the gold or the silver money in any way.

The principal inconvenience in this latter plan is that I $2 \frac{1}{2}$ pence would go to a shilling, and that a half-shilling would no longer be called sixpence ${ }^{1}$; but any other mode of effecting monetary decimalisation in England would be more subversive in effect. The arrangement proposed, being millesimal, has also some advantages over a centesimal subdivision.

Proceeding to compound units of another sort ; the principal of these are Pressure-units, Irrigation-units and Water-supply-units, Power-units, Heat-units, and Electro-magnetic-units. Most of these are dealt with entirely by technical, professional, and scientific men, and hence should fall entirely in a scientific series or system, although in England hitherto this has not been possible owing to the want of fixity and completeness of any distinct scientific system

Pressure-units.-Taking the pressure-units first in order, those ordinarily used in England, the pound per square inch, the pound per square foot, and the ton per square inch. Adopting the simple units at the commercial or normal standard temperature, 62° Fahrenheit in air, the compound units are thus compared with French compound units :-

Since I pound $=0.453593$ kilog.; and I square inch $=644768$ cent. car.; hence i lb. per sq. inch $=$ $0 \cdot 0703498$ kilog. per cent. car.
${ }^{1}$ Perhaps the term tester, testoon, or some other old name could be reapplied.

In the same way also-
I lb. per sq. foot $=4.885403$ kilog. per cent. car.
I ton per sq. inch $=1 \cdot 57583$ quintals per cent. car.
Conversely also in the reduction of French compound units to English values on the commercial scale ;

Since I kilogramme $=2.20462 \mathrm{lbs}$; and I centimètre car. $=0.15509$ square inch; hence I kilog. per centim. car. $=14.21468 \mathrm{lbs}$. per sq. inch.

In the same way also-
I kilog. per mètre car. $=0.204692 \mathrm{lbs}$. per sq. foot.
I millier per cent. carré $=6.34587$ tons per sq. inch.
I quintal per mètre car. $=0.18276 \mathrm{Icwt}$. per square foot.
The reduction and manipulation of such quantities and units is evidently troublesome and inconvenient.

If, however, the English units of the decimal scientific system at 32° be applied to form compound units of pressure, the calculation is not only more simple, but requires merely the movement of the decimal point in the values of the simple units.

In compound units of this system, it is preferable to use the term talent instead of foot-weight, so as to avoid much repetition of the word foot in the combined terms ; but this not often of great consequence.

Using the foot-weight and the square foot, it is thus effected ;

Since 1 foot-weight $=28.315312$ kilogrammes, and 1 square foot $=0.09289968$ mètre carré ; hence 1 footweight per sq. ft. $=3047945$ kilog. per mèt. car. Also,

1 foot-weight per square foot $=0.3047945$ milliers per mètre car.

And this corresponds to the metric value of the linear foot, at the scientific standard, which is 0.3047945 mètre.

In the same way also-
1 foot-weight per sq. foot $=0.03047945$ kilog. per cent. car.

1 rod-weight per sq. foot $=3047945$ milliers per mètre car.

And conversely also-
I kilogramme per mètre carré $=0.003280899$ footweight per sq. foot.

I millier per mètre carré $=3.280899$ foot-weight per sq. foot ;
where the values correspond to that of the linear mètre, as regards figures apart from their decimal position, the latter being 3.280899 feet of the scientific system.

The figures can thus be taken in all cases of pressureunits from the values of simple linear units of the scientific system, given in the preceding chapter; and there is no need of special tables, or of troublesome reduction.

Pressure is frequently estimated in simple, in preference to compound, units; in that case the unit adopted is the theoretical pressure of one atmosphere. Its values expressed in other terms are thus-

I atmosphere $=14.7 \mathrm{I}$ lbs. per sq. inch $=1.033$ kilog. per cent. car.

Its equivalents in counterbalancing water column and mercurial column are-

I atmosphere $=33.9 \mathrm{ft}$. of water $=10.33$ mèt. of water.
" ", " $=2.5$ feet of mercury $=76$ centimètres of mercury.

Irrigation-units.-Treating irrigation-units in the same manner as the compound units of pressure, and using the English commercial units, such as cubic feet of water per acre irrigated :

Since I cubic foot $=0.02829$ I mètre cube ; and I acre $=0.404440$ hectare ;

Hence I cubic foot per acre $=0.06995$ I mètre cube per hectare.

Conversely also-
I mètre cube per hectare $=14.2958$ cubic feet per acre.

But if the English scientific units are used at 32° Fahr., the cubic foot and the square chain, or the century :

Since 1 cubic foot $=0.0283153$ mètre cube; and 1 square chain $=0.0928997$ hectare ;

Hence 1 cubic foot per sq. chain $=0: 3047945$ mètre cube per hectare ; and 1 cubic rod per century $=3.047945$ mètres cubes per hectare.

Conversely also-
I mèt. cube per hectare $=3.280899$ cub. ft. per sq. chain.
" " " " $=0.328090$ cubic rods per century.
The figures in each case being those of values of the linear units, the foot and the metre.

Irrigation is also sometimes estimated in simple in preference to compound units ; in that case the unit
adopted is the linear unit of depth of water when the irrigation is theoretically spread over, or is standing on a surface.

I foot of standing water $=10000$ cubic feet per sq. chain.
$O \cdot 1$ foot of standing water $=10$ cubic feet per century.
$" \ggg>=0.030479$ mètre cub. per hectare.
And
I décimètre of standing water $=1000$ mèt. cub. per hectare.
" , " " " $=328.090$ cubic rods per century.

Water-supply-units.-These, being units of continuous supply, are irrigation-units, compounded with timeunits; the second being the time-unit most commonly adopted both by the English and French.

With commercial units, then-
I cub. ft. per second per acre $=0.06995$ I mèt. cub. per sec. per hectare.

I mèt. cub. per second per hectare $=14.2958$ cub. ft . per sec. per acre.

And with scientific units-
1 cub. ft. per sec. per sq. chain-0.30479 mèt. cub. per sec. per hectare.

I mèt. cub. per sec. per hectare $=3.2809$ cub. ft. per sec. per sq. chain.

Power-units and Units of Work.-The ordinary English power-units on the commercial scale at 62° Fahr. are the foot-pound and the horse-power; the

French corresponding units on the scientific scale at 32° Fahr. are the kilogrammètre and the force de cheval.

The relation is as follows-

| I foot | $=0.304708$ mètre |
| :--- | :--- | :--- |
| I pound | $=0.453593$ kilogramme. |
| i fuot-pound | $=0.1382 \mathrm{I} 34$ kilogramme-mètre. |

Conversely also-
I kilogrammètre $=7.235187$ foot-pounds.
The English horse-power is 33000 lbs. raised I foot in one minute, or 550 foot-pounds per second ; the French force de cheval, or cheval-vapeur is 4500 kilogrammètres per minute, or 75 kilogrammètres per second.

Hence

$$
\begin{aligned}
& \text { I H.-P. English=33000 foot-pounds }=456 \mathrm{I} .0422 \\
& \text { kilog.-mètres per minute. } \\
& \text { " „ „ = I'OI35649 C.-V. French. } \\
& \text { And }
\end{aligned}
$$

In applying English decimal and scientific units at 32° Fahr. in compound units of this class, it may be noticed that as the standard value of the ounce is slightly altered, the millesimal ounce being 0.99879 of a commercial ounce, there may be two modes of obtaining the compound unit, one by reduction and forming an exactly equivalent unit in other terms, the other by simple substitution of the millesimal ounce for the commercial ounce, and thus slightly varying the absolute value of the compound unit.

The latter method is to be preferred, from the advantage of adherence to round numbers.

Next, as the pound does not exist in the decimal series, either the foot-weight, here more conveniently termed a talent, or the millesimal ounce must be adopted. Adopting the talent, the new compound unit will be the foot-talent ; then

I foot $\quad=0.3047945$ mètre.
I talent $=28.315312$ kilogrammes.
Hence I foot-talent $=8.6303504$ kilogrammètres.
And conversely-
I kilogrammètre $=0.115870$ foot-talents.
Hence also-
I cheval-vapeur $=4500$ kilog.-mètres per minute. " " " $=521 \cdot 4150$ foot-talents per minute.

Adopting also the slightly modified value of the English H.-P. unit, instead of being 528000 foot-ounces of the commercial ounce, it becomes 528000 foot-ounces of the millesimal ounce in the scientific series.

Hence I H.-P. $=528$ foot-talents exactly per minute.
$=4556.825$ kilogrammètres.
$=$ r.OI2 6277 cheval-vapeur.
Conversely I cheval-vapeur $=3 \cdot 9875284$ H.-P. of this sort.

While thus keeping as close to the old value of the English H.-P. unit as is possible with corresponding numbers on the scientific scale, no very important alteration is effected, as the change is less than one-tenth per cent., being o.0009.

It may, however, be noticed that this theoretical
horse-power unit would be much more convenient, if entirely altered in value, so as to be in more simple ratio to the lower units and the whole scale of scientific units; 600 foot-talents per minute or 10 foot-talents per second would be a much more convenient value for English H.-P.

Thermal and Electro-magnetic units.-The units adopted in calculations involving heat, thermal equivalents, mechanical equivalents of heat, and calculations of quantity and current, are frequently very complicated and require logarithmic computation. Most of the units involve the foot-grain in English, and the mètregramme in French measure, and the second is the unit of time with both.

Taking the commercial values of these-
The foot-grain $\quad=0.3047 \mathrm{I} \times 0.0648=\left\{\begin{array}{l}0.01974 \text { mèt.- } \\ \text { gramme. }\end{array}\right.$
The mètre-gramme $=3.2818 \times 15.4323=\left\{\begin{array}{l}50.6464 \text { foot- } \\ \text { grains } .\end{array}\right.$
For purposes of this description in scientific units the mil, $\frac{1}{1000}$ th of the millesimal ounce, would be the unit to replace the grain, being somewhere about half of it, or 0.43697 grain; and the new compound scientific unit would be the foot-mil, so that--

1 foot-mil $=0.30479 \times 0.028315=0.00863035$ mètregramme.

I mètre-gramme $=3 \cdot 2809 \times 35 \cdot 3166=115 \cdot 870$ foot-mils.
The change effected by the adoption of these units would run through the whole system of thermal and magnetic quantities and equivalents; but it would certainly be an advantage, on the whole, to carry out the

English decimal scientific system in every branch of scientific work, and thus to become perfectly independent of French terms and units, while obtaining all the advantages of decimalisation and simple systematisation. At some future period it may be hoped that the whole series of English scientific units may be arranged to a single temperature ; but at present, and as long as the French adopt two temperatures in their system, the advantages of exact correlation in this respect, and easy interchange of scientific results with exactitude, perhaps counterbalance that of adopting a single standard temperature.

COMPOUND UNITS.

At the English Commercial Standard, Temp. 62°, Bar. $3^{\prime \prime}$.
Pressure. Commercial Equivalents.

I pound per square inch	$=0.0703498$ kilog. per centim. carré	
I $, \quad, \quad$ foot	$=4.88540$ kilog. per mètre carré	
I cwt.	$,, \quad,$,	$=5.471645$ quintals per mètre carré
I ton	,\quad inch	$=0.157583$ milliers per centim. carré

I kilogramme per centim. carré $=\mathbf{1 4 . 2 1 4 6 8}$ pounds per square inch

Irrigation. Commercial Equivalents.

I cubic foot per acre	$=0.069951$ mètre cube per hectare
,, ,, rood	0.279804

I mètre cube per hectare $\quad=\mathbf{1 4 . 2 9 5 \delta}$ cubic feet per acre
I " $\quad, \quad=3.57395$,, , rood

Power and Work. Commercial Equivalents.
I foot-pound $\quad=0 \cdot 13 \dot{8} 2134$ kilogrammètres r h. $-\mathrm{p} .=33000 \mathrm{ft} .-\mathrm{lbs}$. per $\mathrm{min} .=\mathrm{I}$ OI 35649 force de cheval, c. -v .
1 kilogrammètre $\quad=\quad 7.235 \mathrm{I} 87$ foot-pounds

I c.-v., or force de cheval $(4500)=0.9866164 \mathrm{~h}$.p., horse-power
Heat and Electro-magnetism. Commercial Equivalents. I foot-grain -- o.or9 7448 mètre-grammes I mètre-gramme $=50 \cdot 6464$ foot-grains

Units of Reduction.

The units of reduction required with the English commercial equivalents are hence many and diverse ; the preferable mode is to use the following scientific equivalents, which involve only four units of reduction and their reciprocals apart from the position of the decimal point.

COMPOUND UNITS.

At the English Scientific Standard, Temp. 32° Fahr. in vacuo.
Pressure. Scientific Equivalents.
I talent (or foot-weight) per sq. foot. $=304.7945$ kilog. per mèt. car. $\begin{array}{lll}" & " & =0.03047945 \text { kilog. per cent. car. } \\ ", & =0.3047945 \text { milliers per mèt. car }\end{array}$ I rod-weight per square foot $\quad=304 \cdot 7945$ milliers per mèt. car.

I kilogramme per mètre carré . = 0.003 2809 talents per sq. foot
I kilogramme per centim. carré.$=0.3280899$ talents per sq. tithe
I millier per mètre carré . . = 3280899 talents per sq. foot
I millier per centim. carré . . $=32808990$ rod-weight per sq. foot

Irrigation. Scientific Equivalents.

Power and Work. Scientific Equivalents.
1 foot-talent $=8.6303542$ kilogrammètres
I h-p. $=528 \mathrm{ft}$.-talents per min. $=\mathbf{I} \circ 1263 \mathrm{c}$-v. force de cheval
I kilogrammètre $=0.115870$ foot-talents
r c-v. force de cheval (4500) $=0.987528 \mathrm{~h}-\mathrm{p}$. (scientific)
Heat and Electro-Magnetism. Scientific Equivalents.

\mathbf{I} foot-mil	$=0.00863035$ mètre-grammes
\mathbf{I} mètre-gramme	$=115.870154$ foot-mils

Units of Reduction.

English into French
Simple . . 0.304794494
Square . . 0.092899683
Cubic . . . 0.028315312
Fourth power . o.008630 354 Fourth power . . 115'8701450

CONSTANTS, CORRECTIONS, AND QUANTITIES

Used in connection with Standards.

Comparison of Standard Temperatures on Various Scales.

	Fahr.	Cent.	Réau.
Former English normal temperature .			
Temperature of melting ice			
French commercial and scientific		0	o
nglish scientific normal			
nglish temperature for max. density of water	39		
rench temperature for max. density of water	39.2		
assler's temperature for max. density	$39 \cdot 8$	$4 \cdot 35$	48
Mean atmospheric temperature in connection with barom. pressure			
ormer French temperature of compar		$12 \cdot 5$	10
Swedish normal commercial temperature		15	12
Former French normal, for the toise de Pérou	61	16.25	13
English normal commercial temperature, since			
Prussian normal commercial temperature	65°	18.75	
Normal temperature for Thaï (Siam) .	85	29.44	

Compensating Temperatures for verifying Measures of Capacity by the weight of zeater contained.

DENSITY AND EXPANSION.

Mean Densities of materials used in Standard measures.

At temp. 62° Fahr.

At temp. $62^{\circ} \mathrm{Fahr}$.	
Platinum	21.1572
Brass	8.1430
Bronze gilt	8-2829
Iron adjusted	
Quartz	2.6505
Glass	2.5179
Water	-0.9988834

At temp. 32° Fahr.

Pure platinum		21.402
Annealed platinu		21.326
Pure iridium		22•194
Platinum-iridium iridium	of $\frac{1}{10}$	
Ditto annealed		21.429
Brass		$8 \cdot 0298$
Gun-metal		$8 \cdot 4947$

Ordinary mean densities of metals, accepted.

Mean densities of grain.

Wheat	.	.	0.76	Rye	.	.	0.69	Rice	
Barley	.	.	0.63	Buckwheat	.	0.68	Peas, lentils	.	0.80
Linseed	.	.	0.64	Millet	.	.	0.68	Maize	
Colza	.	.	0.66	Oats	.	.	0.44	Hemp	.

Table of Linear Expansion of Metal Bars between temperatures of 36° and 79° Fahr. applicable to any linear unit.

For I° Fahr.		For 30° Fahr.	For r° Cent.	For 15° Cent.
Platinum	0.00000476	0.000 1428	$0 \cdot 00000857$	0.0001285
Brass	0.00000956	$0 \cdot 0002870$	$0 \cdot 00001721$	$0 \cdot 0002581$
Bronze	0.00000947	0.0002841	$0 \cdot 00001705$	$0 \cdot 0002557$
Copper	$0 \cdot 00000873$	0.0002618	$0 \cdot 00001571$	$0 \cdot 0002357$
Wrought iron	0.00000550	0.0001650	0.00000990	$0 \cdot 0001485$
Cast iron	$0 \cdot 00000611$	$0 \cdot 0001833$	$0 \cdot 000$ O1100	$0 \cdot 0001650$
Cast steel	$0 \cdot 00000575$	$0 \cdot 0001725$	$0 \cdot 000$ 01035	0 000 1553
Glass	$0 \cdot 00000492$	$0 \cdot 0001477$	$0 \cdot 00000886$	$0 \cdot 0001328$
Pinewood	0.00000275	$0 \cdot 0000827$	$0 \cdot 00000495$	0.000 0743

Table of Cubic Expansion.

WEIGHT OF AIR.
Observed values of the weight of a Litre of dry air.

Observer. Regnault. Miller. Lasch.	Place.	Latitude.	Heig	Weight in
	Paris.	$48^{\circ} 50^{\prime} 14^{\prime \prime}$	60 m	
	Cambridge.	$50^{\circ} 12^{\prime} 18^{\prime \prime}$	8 m	
	Paris.	$48^{\circ} 50^{\prime} 14^{\prime \prime}$	$60^{\text {m }}$	I 293204
	Berlin.	$52^{\circ} 30^{\prime} 0^{\prime}$	40^{m}	I 293880
Calculated for mean position		45°	$0^{\text {m }}$	I 293030

Formula for calculating the weight of a Litre of dry air at any piace.
$\mathrm{W}=$ weight in grammes at 0° Centigrade, barom. 760 mm .
$\mathrm{h}=$ height of place above mean sea level.
$\mathrm{L}=$ latitude.
$\mathrm{R}=$ terrestrial radius $=6 \cdot 366198$ mètres.
Then $W=1.2930693\left(I-I \cdot 32 \frac{h}{R}\right)(I-0.0025659 \cos 2 L)$.
Table of Corrections for applying to the mean value $\mathbf{1} \cdot 29303$ for other heights and latitudes, at 0° Cent., bar. 760 mm .

Lat.	$\mathrm{h}=0^{\mathrm{m}}$	50 m	100 m	150 m	$200^{\text {m }}$	250 m
40°	-0.00058	59	60	62	63	64
41°	-0.00046	48	49	50	52	53
42°	-0.00035	36	37	39	40	4 I
43°	-0.00023	25	26	27	29	30
44°	-0.00012	13	14	16	17	18
45°	-0.00000	OI	03	04	05	O7
46°	+0.00012	10	09	08	об	05
47°	+0.00023	22	21	19	18	17
	+0.00035	33	32	3 I	29	28
49 50	+0.00046 +0.00058	45	43	42	41	39
$51{ }^{\circ}$	+0.00069	68	65	54 65	52 64	51 62
52°	+0.00080	79	77	76	75	74
53°	+0.00091	90	89	87	86	85
54°	+0.00102	OI	oo	98	97	96
55°	+0.00113	12	II	09	08	07

Having thus obtained a value (W) at 0° Cent. and 760 mm . bar., allowance may be made for any other temperature (t° Cent.) between 0° and 50° Cent. ; also for pressure of vapour (v) present, and barometric pressure (b), both in millimetres of mercury at 0° Cent.; by the following formula :-

$$
\text { Corrected value }=\frac{W \cdot(\mathrm{~b}-0.378 \mathrm{v})}{\left(\mathrm{I}+0.003656 \mathrm{t}^{\circ}\right) \cdot 760} \mathrm{~F} \mathrm{~F}
$$

WEIGHT OF AIR-continued.

Weight of air displaced by Standard Kilogrammes of various materials at temp. $16 \frac{3}{3}^{\circ}$ Cent., barom. $76 \mathrm{I} \cdot 986 \mathrm{~mm}$.

| | | | | Density. | Weight of air displace. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| in milligrammes. | | | | | |

Weight of air that would be displaced by Standard Foot-weights (or Talents) of various materials, at temp. 62° Fahr., barom. 30 inches.

Weight of air displaced

The allowance to be applied for other temperatures and pressures.
For 10° Fahr. less, deduct 2.12 per cent. ; for $\mathbf{1}^{\prime \prime}$ bar. less, deduct 3.54 per cent.
For 10° Cent. less, deduct 3.82 per cent. ; for 10 mm . bar. less, deduct r.3r per cent.

English and French Values.

At Westminster. Weight of r cubic foot of dry air, bar. $30^{\prime \prime}$	At 62° Fahr. foot-wt. 0 OOOI 215	At 32° Fahr. foot-wt. 0.001294
Weight of a talent or foot-weight of water on		
scientific scale	r 0 oor 657	1
Weight of a talent or foot-weight of water on the	1	0.998343
At Paris.		$\begin{aligned} & \text { At } \circ^{\circ} \text { Cent. } \\ & \text { kilog. } \end{aligned}$
Weight of I décimètre cube of dry air, bar. 760 mm . (Biot)		0.001 299
Weight of I décimètre cube of water in vacuo (nominally)		I

ALLOWANCE; OR ERROR ALLOWED.

ENGLISH STANDARD MEASURES.
In length and in capacity the error allowed in excess is the same as in deficiency. In weight-units and gas measures the error allowed in excess is double that in deficiency.

Length :-

Allowance in excess
In rod of io feet, and in 6 feet . ○.or inch
In 3 feet, 2 feet, and r foot . . 0.005 inch
In I inch to 0.0 I inch . . . ○○OI inch

Capacity :-
Allowance in excess in grain-weights of water.

Grain-weights

For gas-standards.
ro cubic feet, 5 cubic feet, and I cubic foot dry test $2 \frac{1}{2}$ and $\frac{1}{2}$. . . 0.5 per cent. fast

Burette measures.
Allowance in excess
1o cubic inches, 5 cubic inches, 2 cubic inches I grain-weight
I cubic inch, $\circ^{\circ} 5$ cubic inch, $\circ^{\circ} 2$, and o.I cubic inch 0.5 grain-weight FF 2

Weight :-

Allowance in excess
In 56 pounds, in 28 pounds, and in 14 pounds 5 grs.
In 7 pounds, in four pounds, and in 2 pounds 2 grs.
In 1 pound, in 8 ounces, in 4 oz ., in 2 oz., and in I oz. 0.25 grs.
In 8 drams, in 4 drs., in 2 drs., in 1 dr., and in $\frac{1}{2} \mathrm{dr}$.
0.05 grs.

In bullion:-
In 500 ounces, in 400 oz . in 300 oz ., and in 200 oz I gr.
In 100 ounces, in 50 oz ., in 40 oz ., in 30 oz , in 20 oz. . . 0.25 grs.
In io ounces, $5 \mathrm{oz} ., 4 \mathrm{oz} ., 3 \mathrm{oz}$. , and in 2 OZ .
0.025 grs.

In weights between 1 ounce and 0.001 ounce 0.005 grs.

In burette measures, for specified weight of water :-	
In bottle of in666 ${ }^{\frac{2}{3} \text { grains }}$	grs.
In half-bottle	4
In 1000 grains, in 4000 grs., in 2000 grs., in 1000 grs.	grs.
In 000 grains, in 300 grs ., in 200 grs	grs.
In :oo grains	gr.
In 0 grains, in 30 grs., in 20 grs., Io grs.	
In 40 ounces, in 20 ounces.	grs.
In 0 ounces, 5 oz., $4 \mathrm{oz} ., 2 \mathrm{oz}$.	2 grs.
In \times ounce, and in $\frac{1}{2} \mathrm{oz}$.	1 gr .

Allowance: (French) Tolérance; (German) Remedium. FRENCH STANDARD MEASURES.

Length :-

> Allowance in excess or in deficiency 3 millimètres 2 I \quad,

Double décamètre 3 millimètres
Décamètre 2
Demi-décamètre
Double-mètre, et mètre en métal . 0.2 "
Demi-mètre, et decimètre en métal . $0^{\circ} \mathrm{I}$,

Capacity :-

Double litre contenant 2000 grammes
Allowance in excess or in deficiency

Litre
Demi-litre
Quart de litre
Demi-quart
Seizième

1000	$"$
500	$"$
250	$"$
125	$"$
62.5	$"$

3 grammes
2 , 9
I'5 "
I "
$0 \% 7$ "
0.5 ,

Pour matières sèches.
La vérification se fait par moyen de la graine de navette ; les différences en plus ne doivent pas excéder un centième pour les mesures en chêne. Les différences en moins ne sont pas tolérées.

Pour bois de chauffage.
On ne tolère les erreurs aux membrures qu'en plus.
Excédant toléré
Stère 5 millimètres
Double stère 8
Demi-décastère 15 "

Weight. Extreme error allowable in excess only.

In 50 kilogrammes			In iron 20 grammes		In copper	
"	20	"	10	"	150	centigrammes
"	10	"	6	"	80	"
"	5	5 "	4	"	50	"
"	2	"	2	"	25	"
"	1	"	1	"	15	"
"		hectogrammes	0.5	"	10	"
"	2	"	$\bigcirc \cdot 3$,	5	"
"		"	$0 \cdot 2$	"	3	"
"		5 décagrammes	O'I	"	$2 \cdot 5$	
"	2	"	"	"	2.0	"
"	I	"	"	"	I'5	"
"		grammes	$"$	"	1	"
$"$	2	"	"	"	$0 \cdot 4$	"
"	I	"	"	"	$0 \cdot 2$	-

APPENDIX I.

PROPOSED ENGLISH COMMERCIAL SYSIEM.

Having set forth and arranged the commercial units of measure used by the greater part of the world, in the foregoing volume, and estimated the values of these units in accordance with English commercial measure at the modern normal standard temperature, in accordance with English scientific measure at 32° Fahrenheit, and in French units; the work is so far complete as to enable any one to refer to the foregoing tables for any detached commercial unit in Part I. and for any complete commercial system to Part II.

The English scientific system, hitherto deficient in several respects, has been rendered more perfect and complete, and is now available for employment in any scientific and technical work and calculation; the details are given in Chapter VI., Part II. ; the system itself at page 408.

So far, the object of the book as a work of reference may have been attained.

This, however, has not been the sole aim of the laborious calculations, compilation, reduction, and arrangement. The rationale of formation, the origin and modes of development, the defects, advantages, redundancies and incongruities of various modern commercial systems and units of measure have been dealt with in the text, so that every possible light may be thrown on the subject of modern metrology without exceeding the limits of a single volume.

The reasoning and deductions need not necessarily be
barren talk, but should point to some practical and logical conclusion that may benefit the English-speaking millions who are at present heirs to a rather incongruous set of commercial measures ; the pro et contra in the argumentation should certainly be borne in mind, but some useful result in the form of an improved English commercial system, drawn up by some one conversant with the whole subject, seems to be imperatively demanded by the public.

The author has, therefore drawn up the following proposed English system, as a conclusion to the arguments before advanced.

If these arguments be recapitulated in broad and firm lines. they may be generally thus expressed :-
r. A commercial system should be sufficiently comprehensive to meet the requirements of every trade ; and its range should comprise the lowest and the highest values of units in common use.
2. A commercial system should rest on a scientific basis, and thus be thoroughly systematised throughout.
3. The basic units should be familiar to the people, and chosen from among such existing units.
4. Every secondary unit in the whole system should becapable of being conveniently and terminably expressed in terms of the basic units.
5. The mode of subdivision should be in accordance with geometrical formation, thus-in linear units, decimal, in surfaceunits centesimal, in cubic units and in weight units millesimal. Any departure from this principle should alone be permitted at subsidiary points, where the customs of the people imperatively demand a binary or a mixed binary-decimal subdivision.
6. A strict correspondence should exist between the capacity units and the weight units, which should be formed on cubic measure, and the weight of water contained in cubic measure.
7. The changes introduced should be as few as a thorough systematisation can admit of : the amount of change in any old value of a unit should be generally less than that due to change of temperature.
8. The entire system should be as condensed as possible; all unnecessary and incongruous units being discarded.

These principles have been studiously observed in drawing up the following proposed English commercial system.

This, though probably better suited than any other to the wants of the English at the present day, cannot be considered as absolutely final, or as not susceptible of further improvement at some future time, when the habits of the people have changed to a greater degree. At such a period, the portions. of the system that appear slightly incongruous, and are solely retained in deference to old custom in retail trade, may befurther modified ; but this can be then done without altering the framework of the system. Such portions can be best referred to when examining the whole.

The linear measures, it will be observed, are strictly decimal, with one exception ; the mile, which is the old London mile of 5000 feet, in use for ages before the innovating statute-mile became obligatory, is exceptional, and might eventually be abolished, in favour of the league.

In the surface measures, the whole are centesimal with two exceptions, the acre and the square mile, which might eventually be discarded and supplanted by the rood, century, and square league.

The strictly cubic measures are perfect, but the capacity measures based on cubic measure still retain concession to old habits in retail trade ; a gallon of 200 fluid ounces, and a fluid pound of 20 fluid ounces, would be otherwise preferable.

The measures of weight also might be correspondingly improved by similarly making the stone 200 ounces, and the pound 20 ounces.

The whole of these possible further improvements appear almost impracticable at present, for it seems necessary to keep both the pound and the gallon at some value very close to thepresent Georgian values ; the same reason compels the retention of an acre and a mile.

For the present, therefore, the following simplified and concise English system may be considered as the utmost change: practicable.

THE PROPOSED SYSTEM.

Based on the English Scientific System.

Length.	Equivalent in Existing English Units	
Foot $=10$ tithes $=12$ inches	$=$	1 foot
Rod $=10$ feet	=	10 feet
Chain = 10 rods	=	100 feet
Cable $=10$ chains	=	1000 feet
Mile $=5000$ feet $=50$ chains	=	5000 feet
League $=10000$ feet $=100$ chains	=	10000 feet

Surface.
SRUARE FOOT $=100$ sq. tithes $=144$ sq. in. $=1$ sq. ft. Square rod $=100$ sq. ft. $=100$ sq. ft. Square chain or rood $=10000 \mathrm{sq} . \mathrm{ft} . \quad=10000 \mathrm{sq} . \mathrm{ft}$. Acre $=4$ roods $=40000 \mathrm{sq} . \mathrm{ft} . \quad=40000 \mathrm{sq} . \mathrm{ft}$.
Square cable or century $=100$ roods $=1000000$ sq. ft.
Square mile $=25$ centuries $=625$ acres $=25000000 \mathrm{sq} . \mathrm{ft}$.
Square league $=100$ centuries $\quad=100000000$ sq. ft.
Cubic.
Cubic tithe, or fluid ounce $\quad=0.001 \mathrm{cub} . \mathrm{ft}$.
CUBIC FOOT $=1000 \mathrm{cub}$. tithes $=1728 \mathrm{cub} . \mathrm{in} .=1 \mathrm{cub} . \mathrm{ft}$.
Cubic rod $=1000 \mathrm{cub} . \mathrm{ft} . \quad=1000 \mathrm{cub} . \mathrm{ft}$.
Wet Capacity (in retail).
Fluid ounce $=1$ cubic tithe $=1000$ fluid mils $\quad=0.001 \mathrm{cub} . \mathrm{ft}$. Fluid pound $=16$ fluid ounces $\quad=0.016 \mathrm{cub} . \mathrm{ft}$. Gallon $=10$ fluid pounds $=160$ fluid ounces $\quad=0 \cdot 160 \mathrm{cub} . \mathrm{ft}$.

Wet and Dry Capacity.
Bushel or firkin=1 cubic foot $=1000 \mathrm{fl} . \mathrm{oz} .=1 \mathrm{cub} . \mathrm{ft}$. Tun $=40$ firkins or bushels $=40$ cubic feet $=40 \mathrm{cub} . \mathrm{ft}$.

Weight.
Ounce $=1000$ mils $\quad=0.001 \mathrm{ft} .-w t$.
Pound $=16$ ounces $\quad=0.016 \mathrm{ft}$. -ret.
Stone $=10$ pounds $=160$ ounces $\quad=0.160 \mathrm{ft}$. -wt .
Foot-weight or talent $=1000 \mathrm{oz} .=62 \frac{1}{2}$ pounds $=1 \mathrm{ft} .-w \mathrm{t}$.
Ton $=40$ foot-weight or talents $=40 \mathrm{ft}$. -wt.
Rod-weight $=1000$ foot-weight $\quad=1000 \mathrm{ft} .-$ wet.

APPENDIX II.

THE ACTUAL AND THE PROPOSED STANDARD TEMPERATURE AND PRESSURE.

On referring to the tables giving values of foreign commercial units, it will be noticed that in every case a French metric value, an English commercial value, and an English scientific value, are given.

The reasons for so doing are that the correct mode of comparing English and French units is a matter still open to consideration and grave doubt, and that either mode might not only be adopted in actual practice, but might also be made legal at any time. The reader can choose for himself, and the tables afford convenience, whichever may be his choice.

1. The French Conditions.-The French system is a twotemperature system, under a pressure of zero, or, as it is termed, a vacuum system; the temperatures are 0° Celsius, or centigrade, for the material of the standard, and $4^{\circ} \mathrm{C}$. for the distilled water, through which measures of weight and of capacity and cubic measure are made to correspond. These are laboratory conditions tolerably convenient on the whole, owing their principal advantage to the absence of pressure and of any need for the consideration of air-displacement; but the two temperatures, one for the vessel or material, the other for the water, constitute a defect.

In French commercial transactions the litre and mètre are not used in vacuo at freezing-point, but in open air, under any pressure and at any temperature; no allowance is made either for pressure, displacement, or expansion ; the small loss to the
seller in length, and the small gain to him by displacement in capacity and weight, being borne by him. His litre and mètre cannot be absolutely true and correct, except under the theoretical laboratory conditions under which they are formed, and under which they may be verified at any time.

Hence, to speak with exactitude, the true values of the litre and mètre are not used in actưal trade ; approximate values take their place. The materials of which measures are constructed are various, with different expansions, but the primary kilogramme and mètre are made of platinum. Thus the French in commerce disregard the whole of the discrepancies arising from local conditions and material, and the seller in any transaction, while submitting to the burden, can enhance his prices and recover from the buyer. This mode is probably on the whole the most convenient; and is certainly the best for all ordinary coarse purposes of trade.

The French law, however, confines this method to trade only, and wisely abstains from interference with the scientific man and his calculated results. It does not say to him, 'Thy mètre shall not expand,' or 'Thou shalt not calculate on the expansion of thy mètre.' Any such edict, whether imperial, papal, national, or bureaucratic, could only meet with a reply corresponding to the ' E pur si muove' of the distressed Galileo Galilei. Hence, practically, the French scientific man is in purely scientific matters exempt from the regulation to disregard the before-mentioned discrepancies.

It may also be noticed that the French do not and cannot lay down the law regarding the use in trade of French metric measures in countries beyond French rule ; far less can they regulate details affected by temperature and local conditions. The country of adoption alone has the requisite regulative power, and that is necessarily then confined to trade alone.
2. The English Commercial Conditions.-The English commercial standards are now said to be correct in air under a twotemperature system, in which the material is at a temperature of 62° Fahrenheit, and the distilled water of comparison is taken at a maximum density temperature about $39^{\circ} 4 \mathrm{~F}$.

Probably this method has been too much extolled on account of its advantage of approximating to the mean conditions under which English trade weighing and measuring is conducted. Its historic accuracy is also in its favour, as our Anglian, Saxon, and Danish forefathers doubtlessly used openair standards, and probably verified them at some grand annual gathering that would not have taken place in the winter season. The Georgian normal temperature was artificial and exceptional.

Great as the above-mentioned practical advantage may be, it is more imaginary than real : discrepancies due to change of temperature must exist, and it is of slight consequence whether they are a little greater or a little less in value; while from a scientific point of view any and every open-air system is necessarily very clumsy and inconvenient, from the perpetual change of allowance to be made on account of altered air-displacement under different temperatures. The material used is brass, and sometimes bronze, or Baily's metal ; which mixed metals are scientifically inconvenient, on account of variety of expansion and of density in material nominally the same. But the principal monstrosity is the problem the system presents in requiring the gallon or other vessel-measure to be at a temperature of $62^{\circ} \mathrm{F}$., while its contents, the distilled water, must be at about $39^{\circ} 4 \mathrm{~F}$., for actual correct verification. As this is manifestly impossible, recourse is had to theoretical compensating temperatures and calculated adjustment : this is a mode of avoiding the correct construction, but cannot be justly said to be doing it.

A system is most faulty that does not permit of direct and simple determination of every unit belonging to it.

If the English conditions included a temperature of 62° F. for the water as well as the material-that is, throughout -they would be more defensible in an open-air and a practical commercial system ; but as they are, they both fail greatly from a scientific point of view, and are defective in not sufficiently approximating to ordinary commercial conditions.

Some judicious alteration seems imperatively needed.
3. The English Scientific Conditions.-On account of the extreme clumsiness and incongruity in the English commercial conditions, a great number of scientific men in England havepreferred adopting the simpler conditions of the French metric standards ; that is, a vacuum system, with the two temperatures, freezing for material, and that of maximum density for the water. It is of great convenience to them in many ways, especially in exact calculations, and has the advantage of keeping the values of English units exactly parallel with the French units. Having adopted as four basic units, the foot, the square foot, the cubic foot, and the foot-weight, and their decimal multiples and submultiples, under these conditions Englishmen can keep their scientific calculations as simple and clear as the French.

It may perhaps be said that such conditions are not legal ; and this is true in that English law does not yet acknowledge them. On the other hand, the law does not forbid them, and could not practically hinder their adoption in non-trading matters, even though a bureaucrat should arise that knew not the name of science.

The former Warden of the Standards, Mr. Chisholm, in his work on 'The Science of Weighing and Measuring,' refers to scientific and commercial units, and thus recognised the two distinct sets of conditions.

That it would be more advisable to have only one set of conditions in England both for scientific and commercial purposes, is a theory that may be true ; but assuming it to be correct, the trade should then not lay down the law for science, but should follow it, and adopt the conditions preferred by scientific men generally. In the meantime things remain as they are.
4. Comparison of French and English Units.-There are at present two distinct modes of comparing French and English units, and these two methods have each a strong array of supporters on various theoretical and logical grounds, in addition to the numerous backers that follow their own likes and dis-
likes: they may be briefly termed the expanders and the freezers.

The expanders believe that the French and English units should be compared in similar material at the same temperature and under the same conditions, and adopting the English commercial conditions as those of comparison in England, use the expanded mètre at $62^{\circ} \mathrm{F}$., the expanded litre in air instead of in vacuo, and the rest of the metric units as they then would be under English conditions, although using such metric standards as were previously originally correct under French conditions. The expanders hence allow for expansion, air-displacement, and for every change in the value of French standards that has practically occurred in the transition from 32° in vacuo to $62^{\circ} \mathrm{F}$. in air. They thus obtain the English commercial equivalents of French units ; and correspondingly also reduce English commercial to French units in the converse way.

The former Warden of the Standards was a supporter of this method ; and a great number of men have adopted it for a long time (since 1860); it appears logical, rational, and correct; although it is perhaps not so good as it seems.

The freezers adopt a different mode of comparison ; they say the French mètre is a French mètre, by which they mean an abstract unit of length; and they either ignore or avoid expansion or allowance for change by thus denying the presence of material in the unit. They also explain with considerably better argument that the French metric system laid down by the French in vacuo at 0° and at $4^{\circ} \mathrm{C}$., can be correct only under its own conditions. As also the corresponding assertion that the English commercial system can only be accurate under its own conditions is also true ; the freezers arrive at the conclusion that the proper mode of comparison is to allow each system its own conditions, and to compare French and English units side by side under the diverse circumstances. The next thing to decide is, 'Can that be actually done?'

In a few special cases it can be done, for a frozen mètre can be placed by the side of an English yard heated to $62^{\circ} \mathrm{F}$.,
and a linear comparison may be easily made ; something similar might also be done with a surface-unit and a cubic unit of French and English measure.

When, however, it comes to attempting anything similar with either capacity-units or weight-units it seems almost hopeless.

The practical problem of comparing a frozen metal litrevessel in vacuo, having water at $4^{\circ} \mathrm{C}$., with a gallon at 62° F. in air, having water at its maximum density, is indeed too formidable. The comparison even of French and English weight-units seems to involve using a balance with a vacuumchamber on one side and not on the other-a serious matter. The freezer's method hence fails, and recourse has to be had to calculation instead of practical determination. On what basis, then, can the calculations be made? If on the admission of expansion, the method fails ; if on ignoring expansion altogether, the deductions must be faulty from a scientific view.

The results, however, of this method are the so-called English scientific equivalents of French metric units, in which expansion \&c. is all ignored, and which necessarily commands the attachment of that very large category of persons that delight in trouble saved ; that is, in a less amount of labour, with indifference to the intrinsic merits of the result. English enactment also supports this method, also a certain number of scientific men. Curiously, however, the commercial and trading communities and chambers seem by no means in its favour generally, but rather follow the expanders.

In consequence of these two methods being both in vogue, it has been necessary to give two English sets of equivalents, the commercial and the scientific equivalents of foreign units, throughout the whole of this book. It could not rest with the author to exclude either, as either might be required by anyone according to choice, and because the matter cannot yet be said to be definitively and permanently settled.

The conclusion to which the arguments of both the expanders and the freezers point is, that no just precise comparison between two such different systems as the French and

English in their original conditions is practically possible ; and that either system, when transmuted in any way, is spoilt. Hence the necessity for having some international conditions, fit for purposes of comparison, drawn up by scientific men of both nations ; also the further necessity for a single temperature instead of a double temperature in those conditions.
5. Proposed Normal and International Conditions.-The foregoing facts and conclusions lead to the belief that the temperature of maximum density of distilled water would form the best normal temperature for all systems or any system, as long as the method of comparing weight-units and capacityunits by means of water remains in vogue.

Such a single temperature could be applied equally well to metallic or other material, as it is now applied to water by universal consent.

Each nation could then declare its units and make its international standards on the basis of that temperature, and in vacuo ; difficulties of comparison would then cease.

On the same grounds it would also be advisable to reform the English conditions, and construct and verify English standards in vacuo, at a uniform and single temperature ;-that of the maximum density of distilled water.

This temperature has been lately re determined by a committee of scientific English investigators, in communication with the English Standards Department; the way for the change is therefore prepared, the step alone has to be taken.

```
    LONDON: PRINTED BY
SPOTTISWOODE AND CO., NEW-STREET SQUARE
    AND PARLIAMENT STREET
        G G
```


ENGINEERING, ARCHITECTURE, AGRICULTURE, MATHEMATICS, MECHANICS, SCIENCE, ETC.

PUBLISHED BY

CROSBY LOCKWOOD \& CO.,

7, STATIONERS'-HALL COURT, LUDGATE HILL, E.C.

ENGINEERING, SURVEYING, ETC.

 Humber's New Work on Water-Supply.
 A COMPREHENSIVE TREATISE on the WATER-SUPPLY of CITIES and TOWNS. By William Humber, A-M. Inst. C.E., and M. Inst. M.E. Illustrated with 50 Double Plates, I Single Plate, Coloured Frontispiece, and upwards of 250 Woodcuts, and containing 400 pages of Text, Imp. 4to, $6 l .6 s$. elegantly and substantially half-bound in morocco.

List of Contents:-
I. Historical Sketch of some of the Machinery.-XII. Conduits.-XIII. Dismeans that have been adopted for the Supply of Water to Cities and Towns.II. Water and the Foreign Matter usually associated with it.-III. Rainfall and Evaporation.-IV. Springs and the waterbearing formations of various districts. V. Measurement and Estination of the Flow of Water.-VI. On the Selection of the Source of Supply.-VII. Wells.VIII. Reservoirs.-IX. The Purification of Water.-X. Pumps.-XI. Pumping
tribution of Water.-XIV. Meters, Service Pipes, and House Fittings.-XV. The Law and Economy of Water Works.XVI. Constant and Intermittent Supply. -XVII. Description of Plates.-Appendices, giving Tables of Rates of Supply, Velocities, \&c. \&c.. together with Sperifications of several Works illustrated, among which will be found :-A Aberdeen, Hideford, Canterbury, Dundee, Halifax, Lambeth, Rotherham, Dublin, and others.
" The most systematic and valuable work upon water supply hitherto produced in English, or in any other language Mr. Humber's work is chararterised almost throughout by an exhaustiveness much more distinctive of French and German than of English technical treatises."-Engineer.
Humber's Great Work on Bridge Construction. A COMPLETE and PRACTICAL TREATISE on CAST and WROUGHT-IRON BRIDGE CONSTRUCTION, including Iron Foundations. In Three Parts-Theoretical, Practical, and Descriptive. By William Humber, A-M. Inst. C.E., and M. Inst. M.E. Third Edition, with 115 Double Plates. In 2 vols. imp. 4to, 62. 16s. $6 d$. half-bound in morocco.
"A book-and particularly a large and costly treatise like Mr. Humber's-which has reached its third edition may certainly be said to have established its own reputation." Eng ineering.

Humber's Modern Engineering.

A RECORD of the PROGRESS of MODERN ENGINEERING. First Series. Comprising Civil, Mechanical, Marine, Hydraulic, Railway, Bridge, and other Engineering Works, \&c. By William Humber, A-M. Inst. C.E., \&c. Imp. 4to, with 36 Double Plates, drawn to a large scale, and Portrait of John Hawkshaw C.E., F.R.S., \&c., and descriptive Letter-press, Specifications, \&c. 3^{l}. $3^{\text {s. }}$ half morocco.

List of the Plates and Diagrams.
Victoria Station and Roof, L. B. \& S. |plates) ; Bridge over the Thames, West C. R. (8 plates) ; Southport Pier (2 plates); London Extension Railway (5 plates) ; ArVictoria Station and Roof, L. C. \& D. and mour Plates : Suspension Bridge, Thames G. W. R. (6 plates) : Roof of Cremorne Music Hall ; Bridge over G. N. Railway; (4 plates): The Allen Engine; Suspension Bridge, Avon (3 plates); Underground Roof of Station, Dutch Rhenish Rail (2 Railway (3 plates).
" Handsomely lithographed and printed. It will find favourwith many who desire to preserve in a permanent form copies of the plans and specifications prepared for the gnidance of the contractors for many important engineering works."-Engineer.
HUMBER'S RECORD OF MODERN ENGINEERING. Second
Series. Imp. 4to, with 36 Double Plates, Portrait of Robert Stephenson. .C.E., \&c., and descriptive Letterpress, Specifications, \&c. $3 l .3$ s. half morocco.

List of the Plates and Diagrams.
Birkenhead Docks, Low Water Basin \mid Viaduct. Merthyr, Tredegar, and Aberga(I5 plates) ; Charing Cross Station Roof, C. C. Railway (3 plates) ; Digswell Viaduct, G. N. Railway ; Robbery Wood Viaduct, G. N. Railway; Iron Permanent Way; Clydach Viaduct, Merthyr, Tredegar, and Abergavenny Railway; Ebbw
HUMBER'S RECORD OF MODERN ENGINEERING. Third Series. Imp. $4 t^{t o}$, with 40 Double Plates, Portrait of J. R. M 'Clean, Esq., late Pres. Inst. C. E, and descriptive Letterpress, Specifications, \&c. $\quad 3^{l .} 3^{s}$. half morocco.

List of the Plates and Diagrams.
Main Drainage, Metropolis. - Branch (2 plates); Outfall Sewer, ReserNorth Side.-Map showing Interception of Sewers ; Middle Level Sewer (2 plates ; Outfall Sewer, Bridge over River Lea (3 plates); Outfall Sewer, Bridge over Marsh Lane, North Woolwich Railway, and Bow and Barking Railway Junction ; Outfall Sewer, Bridge over Bow and Barking Railway (3 plates); Outfall Sewer, Pridge over East London Waterworks' Feeder (2 plates); Outfall Sewer, Reservoir (2 plates); Outfall Sewer, Tumbling Bay and Outlet; Outfall Sewer, Penstocks. South Side.-Outfall Sewer, Bermondsey
voir and Outlet (4 plates); Outfall Sewer, Filth Hoist; Sections of Sewers (North and South Sides).
Thames Embankment.- Section of River Wall ; Steamboat Pier, Westminster (2 plates) ; Landing Stairs between Charing Cross and Waterloo Bridges; York Gate (2 plates) ; Overflow and Outlet at Savoy Street Sewer (3 plates) ; Steamboat Pier, Waterloo Bridge (3 plates); Junction of Sewers, Plans and Sections; Gullies, Plans and Sections; Rolling Stock; Granite and Iron Forts.

HUMBER'S RECORD OF MODERN ENGINEERING. Fourth Series. Imp. 4to, with 36 Double Plates, Portrait of John Fowler, Esq., late Pres. Inst. C.E, and descriptive Letterpress, Specifications, \&c. 3l. 3^{s}. half morncco.

List of the Plates and Diagrams.
Abbey Mills Pumping Station, Main Drainage, Metropolis (4 plates); Barrow Docks (5 plates) ; Manquis Viaduct, Santiago and Valparaiso Railway (2 plates); Adam's Locomotive, St. Helen's Canal Railway (2 plates); Cannon Street Station Roof, Charing Cross Railway (3 plates); Road Bridge over the River Moka (2 plates). Telegraphic Apparatus for Meso-
potamia; Viaduct over the River Wye, Midland Railway (3 plates); St. German's Viaduct, Cornwall Railway (2 plates); Wrought-Jron Cylinder for Diving Bell ; Millwall Docks (6 plates) ; Milroy's Patent Excavator, Metropolitan District Railway (6 plates) ; Harbours, Ports, and Breakwaters (3 plates).

Strains, Formule \& Diagrams for Calculation of.

A HANDY BOOK for the CALCULATION of STRAINS in GIRDERS and SIMILAR STRUCTURES, and their STRENGTH ; consisting of Formulæ and Corresponding Diagrams, with numerous Details for Practical Application, \&c. By William Humber, A•M. Inst. C.E., \&c. Third Edition. With nearly 100 Woodcuts and 3 Plates, Crown $8 \mathrm{vo}, 7 \mathrm{~s} .6 \mathrm{~d}$. cloth.
"The arrangement of the matter in this little volume is as convenient as it well could be. . . . The system of employing diagrams as a substitute for complex computations is one justly coming into great favour, and in that respect Mr. Humber's volume is fully up to the times."-Engineering.
"The formulæ are neatly expressed, and the diagrams good."-Athenaum.

Strains.

THE STRAINS ON STRUCTURES OF IRONWORK; with Practical Remarks on Iron Construction. By F. W. Sheir ds, M. Inst. C.E. Second Edition, with 5 Plates. Royal 8vo, 5s. cloth.
"The student cannot find a better little book on this subject than that written by Mr. Sheilds."-Engizeer.
Barlow on the Strength of Materials, enlarged. A TREATISE ON THE STRENGTH OF MATERIALS, with Rules for application in Architecture, the Construction of Suspension Bridges, Railways, \&c. ; and an Appendix on the Puwer of Locomotive Engines, and the effect of Inclined Planes and Gradients. By Peter Barlow, F.R.S. A New Edition, revised by his Sons, P. W. Barlow, F.R.S., and W. H. Barlow, F.R.S. The whole arranged and edited by W. Humber, A-M. Inst. C.E. 8vo, 400 pp ., with 19 large Plates, $18 s$. cloth.
" The best book on the subject which has yet appeared. We know of no work that so completely fulfils its mission."-English Mechanic.
"The standard treatise upon this particular subject."-Engineer.
Strength of Cast Iron, $\mathcal{E} c$.
A PRACTICAL ESSAY on the STRENGTH of CAST IRON and OTHER METALS. By Thomas Trengold, C.E. Fifth Edition. To which are added, Experimental Researches on the Strength and other Properties of Cast Irm, by E. Hodgkinson, F.R.S. With 9 Engravings and numerous Woodcuts. 8vo, i2s. cloth. . *** Hodgkinson's Researches, separate, price 6 s.

HYDRAULIC TABLES, CO-EFFICIENTS, and FORMULÆ for finding the Discharge of Water from Orifices, Notches, Weirs, Pipes, and Rivers. With New Formulæ, Tables, and General Information on Rain-fall, Catchment-Basins, Drainage, Sewerage, Water Supply for Towns and Mill Power. By John Neville, Civil Engineer, M.R.I.A. Third Edition, carefully revised, with considerable Additions. Numerous Illustrations. Cr. 8vo, I4s. cloth.
"Undoubtedly an exceedingly useful and elaborate compilation."-Iron.
"Alike valuable to students and engineers in practice."-Mining Fournal.
River Engineering.
RIVER BARS: Notes on the Causes of their Formation, and on their Treatment by 'Induced Tidal Scour,' with a Description of the Successful Reduction by this Method of the Bar at Dublin. By I. J. Mann, Assistant Engineer to the Dublin Port and Docks Board. With Illustrations. Royal 8vo. 7s. 6d. cloth. [fust published.

Levelling.

A TREATISE on the PRINCIPLES and PRACTICE of LEVELLING; showing its Application to Purposes of Railway and Civil Engineering, in the Construction of Roads; with Mr. Telford's Rules for the same. By Frederick W. Simms, F.G.S., M. Inst. C.E. Sixth Edition, very carefully revised, with the addition of Mr. Law's Practical Examples for Setting out Railway Curves, and Mr. Trautwine's Field Practice of Laying out Circular Curves. With 7 Plates and numerous Woodcuts. 8vo, 8s. 6d. cloth. $\quad{ }^{*}{ }^{*}$ Trautwine on Curves, separate, $5{ }_{5}{ }^{5}$ "The text-book on levelling in most of our engineering schools and colleges."Engineer.

Practical Tunnelling.

PRACTICAL TUNNELLING: Explaining in detail the Setting out of the Works, Shaft-sinking and Heading-Driving, Ranging the Lines and Levelling under Ground, Sub-Excavating, Timbering, and the Construction of the Brickwork of Tunnels with the amount of labour required for, and the Cost of, the various portions of the work. By F. W. Simms, M. Inst. C.E. Third Edition, Revised and Extended. By D. Kinnear Clari, M.I.C.E. Imp. 8vo, with 21 Folding Plates and numerous Wood Engravings, 30s. cloth.
"It has been regarded from the first as a text-book of the subject. . . . Mr. Clark has added immensely to the value of the book."-Engineer.

Steam.

STEAM AND THE STEAM ENGINE, Stationary and Portable. Being an Extension of Sewell's Treatise on Steam. By D. Kinnear Clark, M.I.C.E. Second Edition. i2mo, 4 s. cloth.
Civil and Hydraulic Engineering.
CIVIL ENGINEERING. By Henry Law, M. Inst. C.E. Including a Treatise on Hydraulic Engineering, by George R. Burnell, M.I.C.E. Sixth Edition, Revised, with large additions on Recent Practice in Civil Engineering, by D. Kinnear Clark, M. Inst. C.E. $12 \mathrm{mo}, 7 s$. $6 d$., cloth.
[Just published.
Gas-Lighting.
COMMON SENSE FOR GAS-USERS : a Catechism of GasLighting for Householders, Gasfitters, Millowners, Architects, Engineers, \&c. By R. Wilson, C.E. 2nd Edition. Cr. 8vo, 2s. $6 d$. Bridge Construction in Masonry, Timber, \mathcal{E} Iron. EXAMPLES OF BRIDGE AND VIADUCT CONSTRUC. TION OF MASONRY, TIMBER, AND IRON ; consisting of 46 Plates from the Contract Drawings or Admeasurement of select Works. By W. Davis Haskoll, C.E. Second Edition, with the addition of 554 Estimates, and the Practice of Setting out Works, with 6 pages of Diagrams. Imp. 4to, $2 l .12 s .6 d$. half-morocco.
"A work of the present nature by a man of Mr. Haskoll's experience, must prove invaluable. The tables of estimates considerably enhance its value."-Ensineering.
Earithwork.
EARTHWORK TABLES, showing the Contents in Cubic Yards of Embankments, Cuttings, \&c., of Heights or Depths up to an average of 80 feet. By Joseph Broadbent, C. E., and Francis Campin, C.E. Cr. 8vo, oblong, 5 s. cloth.

Tramzoys and their Working.

TRAMWAYS: their CONSTRUCTION and WORKING. With Special Reference to the Tramways of the United Kingdom. By D. Kinnear Clark, M. Inst. C. E., Author of 'Railway Machinery,' \&c., 2 vols. 8vo, with Wood Engravings and thirteen folding Plates, 30 s. cloth.
*** The Second or Supplementary Volume, recording analytically the Progress recently made in the Design and Construction of Tramways, and in the Means of Locomotion by Mechanical Power, may be had separately. With Wood Engravings. Large Crown 8vo, $12 s$. cloth.

- All interested in tramways must refer to it, as all railway engineer have turned to the author's work 'Railway Machinery.' "-The Engineer.
Pioneer Engineering.
PIONEER ENGINEERING. A Treatise on the Engineering Operations connected with the Settlement of Waste Lands in New Countries. By Edward Dobson, A.I.C.E. With Plates and Wood Engravings. Revised Edition. I2mo, 5s. cloth.
"A workmanlike production, and one without possession of which no man should start to encounter the duties of a pioneer engineer."-Athencum.
Steam Engine.
TEXT-BOOK ON THE STEAM ENGINE. By T. M. Goodeve, M.A., Barrister-at-Law, Author of " The Principles of Mechanics," "The Elements of Mechanism," \&c. Third Edition. With numerous Illustrations. Crown 8vo, 6 s. cloth.
"Mr. Goodeve's text-book is a work of which every young engineer should possess himself."-Mining fournal.
Steam.
THE SAFE USE OF STEAM : containing Rules for Unprofessional Steam Users. By an Engineer. 4th Edition. Sewed, $6 d$.
" If steam-users would but learn this little book by heart, boiler explosions would become sensations by their rarity."-English Mechanic.
Mechanical Engineering:
MECHANICAL ENGINEERING: Comprising Metallurgy, Moulding, Casting, Forging, Tools, Workshop Machinery, Mechanical Manipulation, Manufacture of the Steam Engine, \&c. By Francis Campin, C.E. i2mo, 3s. cloth boards.
Works of Construction. MATERIALS AND CONSTRUCTION : a Theoretical and Practical Treatise on the Strains, Designing, and Erection of Works of Construction. By F. Campin,C.E. i2mo. 3s. 6 d . cl. brds.
Iron Bridges, Girders, Roofs, \&ic.
A TREATISE ON THE APPLICATION OF IRON TO THE CONSTRUCTION OF BRIDGES, GIRDERS, ROOFS, AND OTHER WORKS. By F. Campin, C.E. I2mo, 3^{s}.
Boiler Construction.
THE MECHANICAL ENGINEER'S OFFICE BOOK: Boiler Construction. By Nelson Foley, Cardiff, late Assistant Manager Palmer's Engine Works, Jarrow. With 29 full-page Lithographic Diagrams. Folio 2 Is, half-bound. [Just published.

Oblique Arches.

A PRACTICAL TREATISE ON THE CONSTRUCTION of OBLIQUE ARCHES. By John Hart. 3rd Ed. Imp. 8vo, 8s. cloth. Oblique Bridges.

APRACTICAL and THEORETICAL ESSAY on OBLIQUE BRIDGES, with 13 large Plates. By the late Geo. Watson Buck, M.I.C.E. Third Edition, revised by his Son, J. H. Watson Buck, M.I.C.E. ; and with the addition of Description to Diagrams for Facilitating the Construction of Oblique Bridges, by W. H. Barlow, M.I.C.E. Royal 8vo, $12 s$ s. cloth.
"The standard text book for all engineers regarding skew arches is Mr. Bu_k's treatise and it would be impossible to consult a better."-Engineer.
Gas and Gasworks. THE CONSTRUCTION OF GASWORKS AND THE MANUFACTURE AND DISTRIBUTION OF COAL-GAS. Originally written by Samuel Hughes, C.E. Sixth Edition. Re-written and much Enlarged, by William Richards, C.E. With 72 Wondcuts. $12 \mathrm{mo}, 5$. cloth boards.
Waterworks for Cities and Towns. WATERWORKS for the SUPPLY of CITIES and TOWNS, with a Description of the Principal Geological Formations of Eng. land as influencing Supplies of Water. By S. Hughes. $4 s .6 \mathrm{~d}$. cloth.
Locomotive-Engine Driving.
LOCOMOTIVE-ENGINE DRIVING; a Practical Manual for Engineers in charge of Locomotive Engines. By Michael Reynolds, M.S.E., formerly Locomotive Inspector L. B. and S. C. R. Fourth Edition, greatly enlarged. Comprising A KEY TO THE LOCOMOTIVE ENGINE. With Illustra. tions and Portrait of Author. Crown 8vo, 4s. 6d. cloth.
" Mr. Reynolds has supplied a want, and has supplied it well. We can confidently recommend the book not only to the practical driver, but to every one who takes an interest in the performance of locomotive engines."-Eng ineer.
The Engineer, Fireman, and Engine-Boy.
THE MODEL LOCOMOTIVE ENGINEER, FIREMAN, AND ENGINE-BOY: comprising a Historical Notice of the Pioneer Locomotive Engines and their Inventors, with a project for the establishment of Certificates of Qualification in the Running Service of Railways. By Michael Reynolds, Author of "Locomotive-Engine Driving." Crown 8vo, 4s. 6d. cloth.
"From the technical knowledge of the author it will appeal to the railway man of to-day more forcibly than anything written by Dr. Smiles."
Stationary Engine Driving.
STATIONARY ENGINE DRIVING. A Practical Manual for Engineers in Charge of Stationary Engines. By Michael Reynolds ("The Engine-Driver's Friend"), Author of "Locomo-tive-Engine Driving," \&c. With Plates and Woodcuts, and Steel Portrait of James Watt. Crown 8vo, 4s. 6d. cloth.
Engine-Driving Life.
ENGINE-DRIVING LIFE; or Stirring Adventures and Incidents in the Lives of Locomotive Engine-Drivers. By Michael Reynolds. Crown 8vo, 2s, cloth.
[7ust published.

Construction of Iron Beams, Pillars, $\mathcal{E C}$.
IRON AND HEAT; exhibiting the Principles concerned in the construction of Iron Beams, Pillars, and Bridge Girders, and the Action of Heat in the Smelting Furnace. By J. Armour, C.E. 3^{s}. Fire Engineering.

FIRES, FIRE-ENGINES, AND FIRE BRIGADES. With a History of Fire-Engines, their Construction, Use, and Management ; Remarks on Fire-Proof Buildings, and the Preservation of Life from Fire; Statistics of the Fire Appliances in English Towns; Foreign Fire Systems; Hints on Fire Brigades, \&c., \&c. By Charles F. T. Younc, C.E. With numerous Illustrations, handsomely printed, 544 pp., demy 8 vo , Il. $4 . s$. cloth.
"We can most heartily commend this book."-Eng ineering.
"Mr. Young's book on 'Fire Engines and Fire Brigades' contains a mass of information, which has been collected from a variety of sources. The subject is so intensely interesting and useful that it demands consideration."-Building News.
Trigonometrical Surveying.
AN OUTLINE OF THE METHOD OF CONDUCTING A TRIGONOMETRICAL SURVEV, for the Formation of Geographical and Topographical Maps and Plans, Military Reconnaissance, Levelling, \&c., with the most useful Problems in Geodesy and Practical Astronomy. By Lieut.-Gen. Frome, R.E., late In-spector-General of Fortifications. Fourth Edition, Enlarged, and partly Re-written. By Captain Charles Warren, R.E. With 19 Plates and 115 Woodcuts, royal 8 vo , 16 s. cloth.

Tables of Curves.

TABLES OF TANGENTIAL ANGLES and MULTIPLES for setting out Curves from 5 to 200 Radius. By Alexander Beazeley, M. Inst. C.E. Second Edition. Printed on 48 Cards, and sold in a cloth box, waistcoat-pocket size, $3 s .6 d$.
"Each table is printed on a small card, which, being placed on the theodolite, leaves the hands free to manipulate the instrument."-Engineer.
"Very handy ; a man may know that all his day's work must fall on two of these cards, which he puts into his own card-case, and leaves the rest behind."Engineering Fieldwork.

THE PRACTICE OF ENGINEERING FIELDWORK, applied to Land and Hydraulic, Hydrographic, and Submarine Surveying and Levelling. Second Edition, revised, with considerable additions, and a supplement on W ATERWORKS, SEWERS, SEWAGE, and IRRIGATION. By W. Davis Haskoll, C.E. Numerous folding Plates. In I Vol., demy 8vo, Il. 5s., cl. boards. Large Tunnel Shafts.

THE CONSTRUCTION OF LARGE TUNNEL SHAFTS. a Practical and Theoretical Essay. By J. H. Watson Buck, M. Inst. C.E., Resident Engineer, London and North-Western Railway. Illustrated with Folding Plates. Royal 8vo, I2s. cloth.
"Many of the methods given are of extreme practical value to the mason, and the observations on the form of arch, the rules for ordering the stone, and the construction of the templates, will be found of considerable use. We commend the book to the engineering profession, and to all who have to build similar shafts."-Building Newos.
"Will be regarded by civil engineers as of the utmost value, and calculated to save much time and obviate many mistakes."-Colliery Guardian.

Survey Practice.

AID TO SURVEY PRACTICE: for Reference in Sarveying, Levelling, Setting-out and in Route Surveys of Travellers by Land and Sea. With Tables, Illustrations, and Records. By Lowis D'A. Jackson, A-M.I.C.E. Author of "Hydraulic Manual and Statistics," \&c. Large crown, 8vo, $\mathbf{1 2 s .}$ 6d., cloth.
"Mr. Jackson has produced a valuable vade-mecum for the surveyor. We can recommend this book as , "ontaining an admirable supplement to the teaching of the accomplished surveyor."-Athencaum.
"A general text book was wanted, and we are able to speak with confidence of Mr. Jackson's treatise. . We cannot recommerd to the student who knows something of the mathematical principles of the subject a better course than to fortify his practice in the field under a competent surveyor with a study of Mr. Jackson's useful manual. The field records illustrate every kind of survey, and will be found an "essential aid to the student."-Building Nezws.
"The author brings to his work a forrunate union of theory and practical experience which, aided by a clear and lucid style of writing, renders the book both a very useful one and very a greeable to read."-Builder.

Sanitary Work.

SANITARY WORK IN THE SMALLER TOWNS AND IN VILLAGES. Comprising :-I. Some of the more Common Forms of Nuisance and their Remedies ; 2. Drainage ; 3. Water Supply. By Chas. Slagg, Assoc. Inst. C.E. Crown 8vo, 3s. cloth.
"A very useful book, and may be safely recommended. The author has had practical experience in the works of which he treats."-Builder.
Locomotives.
LOCOMOTIVE ENGINES, A Rudimentary Treatise on. Comprising an Historical Sketch and Description of the Locomotive Engine. By G. D. Dempsey, C.E. With large additions treating of the Modern Locomotive, by D. Kinnear Clark, C. E., M.I.C.E., Author of "Tramways, their Construction and Working," $\& \mathrm{c} ., \& \mathrm{c}$. With numerous Illustrations. 12mo. 3s. 6 d . cloth boards.
"The student cann t fail to profit largely by adopting this as his preliminary textbook." "Iron and Conl Trades Review.
"Seems a model of what an elementary technical book should be."-Academy.
Fuels and their Economy.
FUEL, its Combustion and Economy ; consisting of an Abridgment of "A Treatise on the Combustion of Coal and the Prevention of Smoke." By C. W. Williams, A.I.C.E. With extensive additions on Recent Practice in the Combustion and Economy of Fuel-Coal, Coke, Wood, Peat, Petruleum, \&c.; by D. Kinnear Clark, C.E., M.I.C.E. Second Edition, revised. With numerous Illustrations. 12 mo .4 s . cloth boards.
"Students should buy the book and read it, as one of the most complete and satisfactory treatises on the combustion and economy of fuel to be had."-Engineer.
Roads and Streets.
THE CONSTRUCTION OF ROADS AND STREETS. In Two Parts. I. The Art of Constructing Common Roads. By Henry Law, C.E. Revised and Condensed. II. Recent Practice in the Construction of Roads and Streets: including Pavements of Stone, Wood, and Asphalte. By D. Kinnear Clark, C.E., M. I.C.E. Second Edit., revised. 12 mo , 5 s. cloth.
"A book which every borough surveyor and engineer must possess, and which will be of considerable service to architects, builders, and property owners generally." Building Nezus.

Sewing Machine (The).

SEWING MACHINERY; being a Practical Manual of the Sewing Machine, comprising its History and Details of its Construction, with full Technical Directions for the Adjusting of Sewing Machines. By J. W. Urquhart, Author of "Electro Plating : a Practical Manual ;" "Electric Light : its Production and Use." With Numerous Illustrations. 12mo, 2s. 6 d . cloth boards.

Field-Book for Engineers.

THE ENGINEER'S, MINING SURVEYOR'S, and CONTRACTOR'S FIELD-BOOK. By W. Davis Haskoll, C.E. Consisting of a Series of Tables, with Rules, Explanations of Systems, and Use of Theodolite for Traverse Surveying and Plotting the Work with minute accuracy by means of Straight Edge and Set Square only; Levelling with the Theodolite, Casting out and Reducing Levels to Datum, and Plotting Sections in the ordinary manner; Setting out Curves with the Theodolite by Tangential Angles and Multiples with Right and Left-hand Readings of the Instrument ; Setting out Curves without Theodolite on the System of Tangential Angles by Sets of Tangents and Offsets; and Earthwork Tables to 80 feet deep, calculated for every 6 inches in depth. With numerous Woodcuts. 4th Edition, enlarged. Cr. 8vo. I2s. cloth.
"The book is very handy, and the author might have added that the separate tables of sines and tangents to every minute will make it useful for many other purposes, the genuine traverse tables existing all the same."-Athencoum.
"Cannot fail, from its portability and utility, to be extensively patronised by the engineering profession."-Mining fournal.

Earthwork, Measurement and Calculation of.

a MANUAL on EARTHWORK. By Alex. J. S. Graham, C.E., Resident Engineer, Forest of Dean Central Railway. With numerous Diagrams. $18 \mathrm{mo}, 2 \mathrm{~s}, 6 \mathrm{~d}$. cloth.
"As a really handy book for reference, we know of no work equal to it ; and the railway engineers and others employed in the measurement and calculation of earthwork will find a great amount of practical information very admirably arranged, and available for general or rough estimates, as well as for the more exact calculations required in the engineers' contractor's offices."-Artizan.

Drawing for Engineers, $\mathcal{E} c$.

THE WORKMAN'S MANUAL OF ENGINEERING DRAWING. By John Maxton, Instructor in Engineering Drawing, Royal Naval College, Greenwich, formerly of R. S. N. A., South Kensington. Fourth Edition, carefully revised. With upwards of 300 Plates and Diagrams. 12 mo , cloth, strongly bound, 4 s .
"A copy of it should be kept for reference in every drawing office."- Engizeering.
"Indispensable for teachers of engineering drawing."-Mechanics' Magazine.
A DICTIONARY of TERMS used in ARCHITECTURE, BUILDING, ENGINEERING, MINING, METALLURGY, ARCHÆOLOGY, the FINE ARTS, \&c. By John Weale. Fifth Edition, revised by Robert Hunt, F.R.S., Keeper of Mining Records, Editor of "Ure's Dictionary of Arts."' I2mo, $6 s$. cl. bds.
"The best small technological dictionary' in the language."-Architect.
"The absolute accuracy of a work of this character can only be judged of after extensive consultation, and from our examination it appears very correct and very complete."-Mining 尹ournal.

MINING, METALLURGY, ETC. Metalliferous Minerals and Mining.
 A TREATISE ON METALLIFEROUS MINERALS AND MINING. By D.C. Davies, F.G.S., author of "A Treatise on Slate and Slate Quarrying." With numerous wood engravings. Second Edition, revised. Cr. 8vo. 12s. 6d. cloth.
 "Without question, the most exhaustive and the most practically useful work we have seen; the amount of information given is enormous, and it is given concisely and intelligibly."-Mining Fournat.
 "The volume is one which no student of mineralogy should be without."-Colliery Guardian.
 "The author has gathered together from all available sources a yast amount of really useful information. As a history of the present state of mining throughout the world this book has a real value, and it supplies an actual want, for no such information has hitherto been brought together within such limited space."-Athencum.

Slate and Slate Quarrying.
A TREATISE ON SLATE AND SLATE QUARRYING, Scientific, Practical, and Commercial. By D. C. Davies, F.G.S., Mining Engineer, \&c. With numerous Illustrations and Folding Plates. Second Edition, carefully revised. 12mo, 3s. 6 d . cloth boards.
"Mr. Davies has written a useful and practical hand-book on an important industry, with all the conditions and details of which he appears familiar."-Engineering.
"The work is illustrated by actual practice, and is unusualiy thorough and lucid. . Mr. Davies has completed his work with industry and skill."-Buizlder.

Metallurgy of Iron.

A TREATISE ON THE METALLURGY OF IRON : containing Outlines of the History of Iron Manufacture, Methods of Assay, and Analyses of Iron Ores, Processes of Manufacture of Iron and Steel, \&c. By H. Bauerman, F.G.S., Associate of the Royal School of Mines. With numerous Illustrations. Fourth Edition, revised and much enlarged. 12 mo , cloth boards, 5 s.
"Has the merit of brevity and conciseness, as to less important points, while all material matters are very fully and thoroughly entered into."-Standard.

Manual of Mining Tools.

MINING TOOLS. For the use of Mine Managers, Agents, Mining Students, \&c. By William Morgans, Lecturer on Practical Mining at the Bristol School of Mines. Volume of Text. 12mo, 3s. With an Atlas of Plates, containing 235 Illustrations. 4to, $6 s$. Together, $9 s$. cloth boards.
"Students in the Science of Mining, and Overmen, Captains, Managers, and Viewers may gain practical knowledge and useful hints by the study of Mr . Morgans' Manual."-Colliery Guardian.
Mining, Surveying and Valuing.
THE MINERAL SURVEYOR AND VALUER'S COMPLETE GUIDE, comprising a Treatise on Improved Mining Surveying, with new Traverse Tables; and Descriptions of Improved Instruments ; also an Exposition of the Correct Principles of Laying out and Valuing Home and Foreign Iron and Coal Mineral Properties. By William Lintern, Mining and Civil Engineer. With four Plates of Diagrams, Plans, \&c., 12mo, 4s. cloth.
"Contains much valuable information given in a small compass, and which, as far as we have tested it, is thoroughly trustworthy."-Iron and Coal Trades Review.
** The above, bound with Thoman's Tables. (See page 20.) Price $7 s .6 d$. cloth.

Coal and Coal Mining.

COAL AND COAL MINING: a Rudimentary Treatise on. By Warington W. Smyth, M.A., F.R.S., \&c., Chief Inspector of the Mines of the Crown. Fifth edition, revised and corrected. 12 mo , with numerous Illustations, 4ρ. cloth boards.
"Every portion of the volume appears to have been prepared with much care, and as an outline is given of every known coal-field in this and other countries, as well as of the two principal methods of working, the book will doubtless interest a very large number of readers."-Mining fournal.

Underground Pumping Machinery.

 MINE DRAINAGE; being a Complete and Practical Treatise on Direct-Acting Underground Steam Pumping Machinery, with a Description of a large number of the best known Engines, their General Utility and the Special Sphere of their Action, the Mode of their Application, and their merits compared with other forms of Pumping Machinery. By Stephen Michell, Joint-Author of "The Cornish System of Mine Drainage." 8vo, 15 s. cloth. [F̛ust published.
NAVAL ARCHITECTURE, NAVIGATION, ETC.

Pocket Book for Naval Architects \mathcal{F} Shipbuilders.

 THE NAVAL ARCHITECT'S AND SHIPBUILDER'S POCKET BOOK OF FORMULE, RULES, AND TABLES AND MARINE ENGINEER'S AND SURVEYOR'S HANDY book of reference. By Clement Mackrow, M. Inst. N. A., Naval Draughtsman. Second Edition, revised. With numerous Diagrams. Fcap., i2s. 6d., strongly bound in leather."Should be used by all who are engaged in the construction or design of vessels." -Eneineer.
"There is scarcely a subject on which a naval architect or shipbuilder can require to refresh his memory which will not be found within the covers of Mr. Mackrow's book."-English Mechanic.
"Mr. Mackrow has compressed an extraordinary amount of information into this useful volume."-Athencum.

Grantham's Iron Ship-Building.

ON IRON SHIP-BUILDING; with Practical Examples and Details. Fifth Edition. Imp. 4to, boards, enlarged from 24 to 40 Plates (21 quite new), including the latest Examples. Together with separate Text, also considerably enlarged, 12 mo , cloth limp. By John Grantham, M. Inst. C. E., \&c. 2l. 2s. complete.
" Mr. Grantham's work is of great interest. It will, we are confident, command an extensive circulation among shipbuilders in general. By order of the Board of Admiralty, the work will form the text-book on which the examination in iron ship-building of candidates for promotion in the dockyards will be mainly based."-Engineering. Pocket-Book for Marine Engineers.

A POCKET-BOOK OF USEFUL TABLES AND FORmule for marine engineers. By Frank Proctor, A.I.N.A. Second Edition, revised and enlarged. Royal 32mo, leather, gilt edges, with strap, 4 s .
"A most useful companion to all marine engineers."-United Service Gazette.
"Scarcely anything required by a naval engineer appears to have been for-gotten."-lron.

Light-Houses.

EUROPEAN LIGHT-HOUSE SYSTEMS ; being a Report of a Tour of Inspection made in 1873. By Major George H. Elliot, Corps of Engineers, U.S.A. Illustrated by 5I Engravings and 3I Woodcuts in the Text. 8vo, 21s. cloth.

Surveying (Land and Marine).

LAND AND MARINE SURVEYING, in Reference to the Preparation of Plans for Roads and Railways, Canals, Rivers, Tov.ns' Water Supplies, Docks and Harbours; with Description and Use of Surveying Instruments. By W. Davis Haskoll, C.E. With 14 folding Plates, and numerous Woodcuts. 8vo, $12 s .6 d$. cloth.
"A most useful and well arranged book for the aid of a student."-Builder.
"Ot the utmost practical utility, and may be safely recommended to all students who aspire to become clean and expert surveyors."-Mining Fournal.
Storms.
STORMS : their Nature, Classification, and Laws, with the Means of Predicting them by their Embodiments, the Clouds. By William Blasius. Crown 8vo, ios. $6 d$. cloth boards.
Rudimentary Navigation. THE SAILOR'S SEA-BOOK: a Rudimentary Treatise on Navigation. By James Greenwcod, B.A. New and enlarged edition. By W. H. Rosser. 12 mo 3s. cloth boards.

Mathematical and Nautical Tables.

MATHEMATICAL TABLES, for Trigonometrical, Astronomical, and Nautical Calculations; to which is prefixed a Treatise on Logarithms. By Henry Law, C.E. Together with a Series of Tables for Navigation and Nautical Astronomy. By J. R. Young, formerly Professor of Mathematics in Belfast College. New Edition. $12 \mathrm{mo}, 4 \mathrm{~s}$. cloth boards.

Navigation (Practical), with Tables.

 PRACTICAL NAVIGATION : consisting of the Sailor's SeaBook, by James Greenwood and W. H. Rosser ; together with the requisite Mathematical and Nautical Tables for the Working of the Problems. By Henry Law, C.E., and Professor J. R. Young. Illustrated with numerous Wood Engravings and Coloured Plates. I2mo, 7 s , strongly half bound in leather.
WEALE'S RUDIMENTARY SERIES.

The following books in Naval Architecture, etc., are published in the above series.
MASTING, MAST'MAKING, AND RIGGING OF SHIPS. By Robert Kipping, N.A. Fourteenth Edition. I2mo, 2s. 6d. cloth. SAILS AND SAIL-MAIKING. Tenth Edition, enlarged. By Robert Kipping, N.A. Illustrated. $\mathbf{1 2 m o}$, 3 s. cloth boards.
NAVAL ARCHITECTURE. By James Peake. Fourth Edition, with Plates and Diagrams. $12 \mathrm{mo}, 4 \mathrm{~s}$. cloth boards.
MARINE ENGINES, AND STEAM VESSELS. By Robert Murray, C.E. Seventh Edition. 12mo, 3s. 6d. cloth boards.

ARCHITECTURE, BUILDING, ETC.

 Construction. THE SCIENCE of BUILDING: An Elementary Treatise on the Principles of Construction. By E. Wyndham Tarn, M.A., Architect. With 58 Wood Engravings. 2nd Edition, revised and enlarged. Crown 8vo, $7 s .6 \mathrm{~d}$. cloth."A very valuable book, which we strongly recommend to all students."-Builder.
" No architectural student should be without this hand-book."-Architect.
Villa Architecture.
A HANDY BOOK of VILLA ARCHITECTURE; being a Series of Designs for Villa Residences in various Styles. With Detailed Specifications and Estimates. By C. Wickes, Architect, Author of "TheSpires and Towers of the Mediæval Churches of England," \&c. 3I Plates, 4to, half morocco, gilt edges, Il. Is.
*** Also an Enlarged edition of the above. 6I Plates, with Detailed Specifications, Estimates, \&c. 2l. 2s. half morocco.
"The whole of the designs bear evidence of their being the work of an artistic architect, and they will prove very valuable and suggestive."-Building Neres.
Useful Text-Book for Architects.
THE ARCHITECT'S GUIDE: Being a Text-book of Useful Information for Architects, Engineers, Surveyors, Contractors, Clerks of Works, \&c. By Frederick Rogers. Author of
"Specifications for Practical Architecture," \&c. Cr. 8vo, 6s. cloth.
"As a text-book of useful information for architects. engineers, surveyors, \&c., it would be hard to find a handier or more complete little volume."-Standard.
Taylor and Cresy's Rome.
THE ARCHITECTURAL ANTIQUITIES OF ROME. By the late G. L. Taylor, Esq., F.S.A., and Edward Cresy, Esq. New Edition, Edited by the Rev. Alexander Taylor, M.A. (son of the late G. L. Taylor, Esq.), Chaplain 'of Gray's Inn. Tris is the only book which gives on a large scale, and with the precision of architectural measurement, the principal Monuments of Ancient Rome in plan, elevation, and detail. Large folio, with 130 Plates, half-bound, 3 l. 3 s.
*** Originally published in two volumes, folio, at 181 . $18 s$.
Vitruvius' Architecture.
THE ARCHITECTURE OF MARCUS VITRUVIUS pOLLIO. Translated by Joseph Gwilt, F.S.A., F.R.A.S. Numerous Plates. 12 mo, cloth limp, 5 s.
The Young Architect's Book.
hints to young architects. By George Wightwick, Architect. New Edition, revised and enlarged. By G. Huskisson Guillaume, Architect. 12 mo , cloth boards, 4 s .
"Will be found an acquisition to pupils, and a copy ought to be considered as necessary a purchase as a box of instruments." ${ }^{\prime}$-Architect.
"A large amount of iuformation, which young architects will do well to acquire, if they wish to succeed in the everyday work of their profession."-English Mechanic. Drazerng for Builders and Students.

PRACTICAL RULES ON DRAWING for the OPERATIVE BUILDER and YOUNG STUDENT in ARCHITECTURE. By George Pyne. With 14 Plates, 4to, 7s. 6d. boards.

Cement.

PORTLAND CEMENT FOR USERS. By Henry Faija, A. M., Inst. C.E., with Illustrations. Crown 8 vo. 3 s. $6 d$. cloth.
"A useful compendium of results for the practical builder and architect."-Building Nezos.

The House-Owner's Estimator.

THE HOUSE-OWNER'S ESTIMATOR; or, What will it Cost to Build, Alter, or Repair? A Price-Book adapted to the Use of Unprofessional People as well as for the Architectural Surveyor and Builder. By the late James D. Simon, A.R.I.B. A. Edited and Revised by Francis T. W. Miller, A.R.i.B.A., Surveyor. Third Edition, Revised. Crown 8vo, 3s. 6d., cloth.
"In two years it will repay its cost a hundred times over."-Field.
" A very handy book for those who want to know what a house will cost to build, alter, or repair." - English Mechanic.
Boiler and Factory Chimneys.
BOILER AND FACTORY CHIMNEYS ; their Draught-power and Stability, with a chapter on Lightning Conductors. By Robert Wilson, C.E. Crown 8vo, 3 s . 6 d . cloth.
Civil and Ecclesiastical Building.
a Book on building, civil and Ecclesiastical, Including Church Restoration. By Sir Edmund Beckett, Bart., LL.D., Q.C., F.R.A.S., Chancellor and Vicar-General of York. Author of "Clocks and Watches and Bells," \&c.
Second Edition, 12 mo , 5s. cloth boards.
"A book which is always amusing and nearly always instructive. Sir E. Beckett will be read for the raciness of his style. We are able very cordially to recommend all persons to read it for $\mathrm{t}^{\text {t }}$ emselves.' -Times.
"We commend the book to the thoughtful consideration of all who are interested in the building art."-Builder.

Architecture, Ancient and Modern.

RUDIMENTARY ARCHITECTURE, Ancient and Modern. Consisting of VITRUVIUS, translated by Joseph Gwilt, F.S.A., \&c., with 23 fine copper plates; GRECIAN Architecture, by the Earl of Aberdeen; the ORDERS of Architecture, by W. H. Leeds, Esq ; The STVLES of Architecture of Various Countries, by T. Talbot Bury; The PRINCIPLES of DESIGN in Architecture, by E. L. Garbe'tt. In one volume, half-bound (pp. I, IOO), copiously illustrated, $\mathbf{I} 2 \mathrm{~s}$. ** Sold separately, in two vols., as follows-
ANCIENT ARCHITECTURE. Containing Gwilt's Vitruvius and Aberdeen's Grecian Architecture. Price $6 s$. half-bound.
N.B.- This is the only edition of VITRUVIUS procurable at a moderate price.
MODERN ARCHITECTURE. Containing the Orders, by Leeds ; The Styles, by Bury; and Design, by Garbett. 6s. half-bound.

[^18] man."-English Mechanic.

Plumbing.

PLUMBING; a Text-book to the Practice of the Art or Craft of the Plumber. With chapters upon House-drainage, embodying the latest Improvements. By W. P. Buchan, Sanitary Engineer. Third Edition, enlarged, with 300 illustrations, 12mo. 4s. cloth.
"The chapters on house-dranage may be usefully consulted, not only by plumbers, but also by engineers and all engaged or interested in house-building."-Iron.
Handbook of Specifications.
THE HANDBOOK OF SPECIFICATIONS ; or, Practical
Guide to the Architect, Engineer, Surveyor, and Builder, in drawing up Specifications and Contracts for Works and Constructions. Illustrated by Precedents of Buildings actually executed by eminent Architects and Engineers. By Professor Thomas L. Donaldson, M.I.B.A. New Edition, in One large volume, 8vo, with upwards of 1000 pages of text, and 33 Plates, cloth, il. IIs. 6 d .
"In this work forty-four specifications of executed works are given. . .. Dcnaldson's Handbook of Specifications must be bought by all architects."-Builder.
Specifications for Practical Architecture.
SPECIFICATIONS FOR PRACTICAL ARCHITECTURE: A Guide to the Architect, Engineer, Surveyor, and Builder ; with an Essay on the Structure and Science of Modern Buildings. By Frederick Rogers, Architect. 8vo, i5s. cloth.
${ }^{*}$ * A volume of specifications of a practical character being greatly required, and the old standard work of Alfred Bartholomew being out of print, the author, on the basis of that work, has produced the above.-Extract from Preface.
Designing, Measuring, and Valuing.
THE STUDENT'S GUIDE to the PRACTICE of MEASURING and VALUING ARTIFICERS' WORKS; containing Directions for taking Dimensions, Abstracting the same, and bringing the Quantities into Bill, with Tables of Constants, and copious Memoranda for the Valuation of Labour and Materials in the respective Trades of Bricklayer and Slaier, Carpenter and Joiner, Painter and Glazier, Paperhanger, \&c. With 43 Plates and Woodcuts. Originally edited by Edward Dobson, Architect. New Edition, re-written, with Additions on Mensuration and Construction, and useful Tables for facilitating Calculations and Measurements. By E. Wyndham Tarn, M.A., 8vo, ios. $6 d$. cloth.
"Well fulfils the promise of its title-page., Mr. Tarn's additions and revisions have much increased the usefulness of the work."-Engineering.
Beaton's Pocket Estimator.
THE POCKET ESTIMATOR FOR THE BUILDING TRADES, being an easy method of estimating the various parts of a Building collectively, more especially applied to Carpenters' and Joiners' work, priced according to the present value of material and labour. By A. C. Beaton, Author of '"Quantities and Measurements." Second Edition. Waistcoat-pocket size. is. 6d. Beaton's Builders'and Surveyors' TechnicalGuide. THE POCKET TECHNICAL GUIDE AND MEASURER FOR BUILDERS AND SURVEYORS: containing a Complete Explanation of the Terms used in Building Construction, Memoranda for Reference, Technical Directions for Measuring Work in all the Building Trades, \&c. By A. C. Beaton. is. $6 d$.

Builder's and Contractor's Price Book.

LOCKWOOD \& CO.'S BUILDER'S AND CONTRACTOR'S PRICE BOOK, containing the latest prices of all kinds of Builders' Materials and Labour, and of all Trades connected with Building, \&c., \&c. The whole revised and edited by F. T. W. Milier, A.R.I.B.A. Fcap. half-bound, $4 s$.

CARPENTRY, TIMBER, ETC.

Tredgold's Carpentry, new and cheaper Edition. THE ELEMENTARY PRINCIPLES OF CARPENTRY: a Treatise on the Pressure and Equilibrium of Timber Framing, the Resistance of Timber, and the Construction of Floors, Arches, Bridges, Roofs, Uniting Iron and Stone with Timber, \&c. To which is added an Essay on the Nature and Properties of Timber, \&c., with Descriptions of the Kinds of Wood used in Building ; also numerous Tables of the Scantlings of Timber for different purposes, the Specific Gravities of Materials, \&c. By Thomas Tredgold, C.E. Edited by Peter Barlow, F.R.S. Fifth Edition, corrected and enlarged. With 64 Plates, Portrait of the Author, and Woodcuts. 4to, published at 2l. 2s., reduced to 1l. 5s. cloth.
"Ought to be in every architect's and every builder's library, and those who do not already possess it ought to avail themselves of the new issue." - Builder.
"A work whose monumental excellence must commend it wherever skilful carpentry is concerned. The Author's principles are rather confirmed than impaired by time. The additional plates are of great intrinsic value."-Building News.

Grandy's Timber Tables.

THE TIMBER IMPORTER'S, TIMBER MERCHANT'S, and BUILDER'S STANDARD GUIDE. By Richard. E. Grandy.
2nd Edition. Carefully revised and corrected. 12mo, 3s. 6d. cloth.
" Everything it pretends to be: built up gradually, it leads one from a forest to a treenail, and torows in, as a makeweight, a host of material concerning bricks, columms, cisterns, \&c.-all that the class to whom it appeals requires."-English Mechanic.
Timber Freight Book.
THE TIMBER IMPORTERS' AND SHIPOWNERS' FREIGHT BOOK : Being a Comprehensive Series of Tables for the Use of Timber Importers, Captains of Ships, Shipbrokers, Builders, and all Dealers in Wood whatsoever. By William Richardson, Timber Broker. Crown 8vo, $6 s$, cloth.

Tables for Packing-Case Makers.

PACKING-CASE TABLES ; showing the number of Superficial Feet in Boxes or Packing-Cases, from six inches square and upwards. By W. Richardson. Oblong 4to, 3 s . 6 d . cloth.
"Invaluable labour-saving tables."-Ironmonger.
Coach Building.
COACH BUILDING: A Practical Treatise, Historical and Descriptive, containing full information of the various Trades and Processes involved, with Hints on the proper keeping of Carriages, \&c. With 57 Illustrations. By James W. Burgess. I2mo, $3^{s .}$., cloth boards

Horton's Measurer.

THE COMPLETE MEASURER ; setting forth the Measurement of Boards, Glass, \&c. ; Unequal-sided, Square-sided, Oc-tagonal-sided, Round Timber and Stone, and Standing Timber. With just allowances for the bark in the respective species of trees, and proper deductions for the waste in hewing the trees, \&c.; also a Table showing the solidity of hewn or eight-sided timber, or of any octagonal-sided column. By Richard Horton. Third edition, with considerable and valuable additions, $\mathbf{I} 2 \mathrm{mo}$, strongly bound in leather, 5 s.
Horton's Underwood and Woodland Tables. TABLES FOR PLANTING AND VALUING UNDER. WOOD AND WOODLAND; also Lineal, Superficial, Cubical, and Decimal Tables, \&c. By R. Horton. 12mo, 2s. leather.
Nicholson's Carpenter's Guide.
THE CARPENTER'S NEW GUIDE; or, BOOK of LINES for CARPENTERS : comprising all the Elementary Principles essential for acquiring a knowledge of Carpentry. Founded on the late Peter Nicholson's standard work. A new Edition, revised by Arthur Ashpitel, F.S.A., together with Practical Rules on Drawing, by George Pyne. With 74 Plates, 4 to, il. is. cloth.
Dowsing's Timber Merchant's Companion. THE TIMBER MERCHANT'S AND BUILDER'S COM. PANION ; containing New and Copious Tables of the Reduced Weight and Measurement of Deals and Battens, of all sizes, from One to a Thousand Pieces, also the relative Price that each size bears per Lineal Foot to any given Price per Petersburgh Standard Hundred, \&c., \&c. Also a variety of other valuable information. By William Dowsing, Timber Merchant. Third Edition, Revised. Crown 8vo, 3s. cloth.
"Everything is as concise and clear as it can possibly be made. There can be no doubt that every timber merchant and builder ought to possess it."-Hull Advertiser.

Practical Timber Merchant.

THE PRACTICAL TIMBER MERCHANT, being a Guide for the use of Building Contractors, Surveyors, Builders, \&c., comprising useful Tables for all purposes connected with the Timber Trade, Essay on the Strength of Timber, Remarks on the Growth of Timber, \&c. By W. Richardson. Fcap. 8vo, 3s. 6d. cl. Woodworking Machinery. WOODWORKING MACHINERY; its Rise, Progress, and Construction. With Hints on the Management of Saw Mills and the Economical Conversion of Timber. Illustrated with Examples of Recent Designs by leading English, French, and American Engineers. By M. Powis Bale, M.I.M.E. Large crown 8vo, 12 s .6 d . cloth.
"Mr. Bale is evidently an expert on the subject, and he has collected so much information that his book is all-sufficient for builders and others engaged in the conversion of timber."-Architect.
"The most comprehensive compendium of wood-working machinery we have seen. The author is a thorough master of his subject."-Building Nezus.
"It should be in the office of every wood-working factory."-Engglish Mechanic.

MECHANICS, ETC.

Turning.
LATHE-WORK : a Practical Treatise on the Tools, Appliances, and Processes employed in the Art of Turning. By Paul N. Hasluck. With numerous Illustrations drawn by the Author. Crown 8vo, 5 s. cloth.
[7 ust published.
"Evidently written from personal experience, and gives a large amount of just that sort of information which beginners at the lathe require."-Buitlder.
"Expounds the art and mystery of the turner in an informative fashion."-Scotsman.
"Mr. Hasluck's book will be a boon to amateurs."-Architect.

Mechanic's Workshop Companion.

THE OPERATIVE MECHANIC'S WORKSHOP COMPANION, and THE SCIENTIFIC GENTLEMAN'S PRACTICAL ASSISTANT. By W. Templeton. 12th Edit., with Mechanical Tables for Operative Smiths, Millwrights, Engineers, \&c. ; and an Extensive Table of Powers and Roots, I2mo, 5s. bound.
" Admirably adapted to the wants of a very large class. It has met with great success in the engineering workshop, as we can testify; and there are a great many men who, in a great measure, owe their rise in life to this little work."-Building News.
Engineer's and Machinist's Assistant.
THE ENGINEER'S, MILLWRIGHT'S, and MACHINIST'S PRACTICAL ASSISTANT ; comprising a Collection of Useful Tables, Rules, and Data. By Wm. Templeton. 18mo, $2 s .6 d$.
"A more suitable present to an apprentice to any of the mechanical trades could not possibly be made."-Building Nerws.

Superficial Measurement.

THE TRADESMAN'S GUIDE TO SUPERFICIAL MEA. SUREMENT. Tables calculated from \mathbf{I} to 200 inches in length, by I to 108 inches in breadth. For the use of Architects, Engineers, Timber Merchants, Builders, \&c. By J. Hawkings. Fcp. 3s. 6d. cl. The High-Pressure Steam Engine.

THE HIGH-PRESSURE STEAM ENGINE; an Exposition of its Comparative Merits, and an Essay towards an Improved System of Construction, adapted especially to secure Safety and Economy. By Dr. Ernst Alban. Translated from the German, with Notes, by Dr. Pole, F.R.S. 8vo, $16 s .6 d$. cloth.
Steam Boilers.
A TREATISE ON STEAM BOILERS : their Strength, Construction, and Economical Working. By R. Wilson, C.E. Fifth Edition. 12 mo , 6s. cloth.
"The best work on boilers which has come under our notice"-Engineering.
"The best treatise that has ever been published on steam boilers."-Engineer.
Power in Motion.
POWER IN MOTION : Horse Power, Toothed Wheel Gearing, Long and Short Driving Bands, Angular Forces, \&c. By James Armour, C.E. With 73 Diagrams. 12mo, 3s., cloth.
Mechanics.
THE HANDBOOK OF MECHANICS. By Dionysius Lardner, D.C.L. New Edition, Edited and considerably Enlarged, by Benjamin Loewy, F.R.A.S., \&c., post $8 \mathrm{vo}, 6 \mathrm{~s}$. cloth.
"Studiously popular . . . The application of the various branches of physics to the industrial arts is carefully shown." - Mining Fournal.

MATHEMATICS, TABLES, ETC.

Gregory's Practical Mathematics.
MATHEMATICS for PRACTICAL MEN ; being a Commonplace Book of Pure and Mixed Mathematics. Designed chiefly for the Use of Civil Engineers, Architects, and Surveyors. Part I. Pure Mathematics-comprising Arithmetic, Algebra, Geometry, Mensuration, Trigonometry, Conic Sections, Properties of Curves. Part II. Mixed Mathematics-comprising Mechanics in general, Statics, Dynamics, Hÿdrostatics, Hydrodynamics, Pneumatics, Mechanical Agents, Strength of Materials. With an Appendix of copious Logarithmic and other Tables. By Olinthus Gregory, LL.D., F.R.A.S. Enlarged by Henry Law, C.E. 4th Edition, revised by Prof. J. R. Young. With 13 Plates. 8vo, il. Is. cloth.
"The engneer or architect will here find ready to his hand, rules for solving nearly every mathematical difficulty that may arise in his practice."-Builder.
The Metric System.
A SERIES OF METRIC TABLES, in which the British Standard Measures and Weights are compared with those of the Metric System at present in use on the Continent. By C. H. Dowling, C.E. 2nd Edit., revised and enlarged. 8vo, ios. $6 d$. cl.
"Their accuracy has been certified by Prof. Airy, Astronomer-Royal."-Builder.
Inwood's Tables, greatly enlarged and improved. TABLES FOR THE PURCHASING of ESTATES, Freehold, Copyhold, or Leasehold; Annuities, Advowsons, \&c., and for the Renewing of Leases held under Cathedral Churches, Colleges, or other corporate bodies; for Terms of Years certain, and for Lives; also for Valuing Reversionary Estates, Deferred Annuities, Next Presentations, \&c., together with Smart's Five Tables of Compound Interest, and an Extension of the same to Lower and Intermediate Rates. By William Inwood. 2Ist edition, with Tables of Logarithms for the more Difficult Computations of the Interest of Money, Discount, \&c. By M. Fédor Thoman. 12mo. 8s. cloth.
"Those interested in the purchase and sale of estates, and in the adjustment of compensation cases. as well as in transactions in annuities, life insurances, \&c., will find the present edition of eminent service."-Engineering.
Geometry for the Architect, Engineer, $\mathcal{E c}$. PRACTICAL GEOMETRY, for the Architect, Engineer, and Mechanic. By E. W.Tarn, M.A., Architect. Second Edition, with Appendices on Diagrams of Strains and Isometrical projections. Demy 8vo, 9s. cloth.
Mathematical Instruments.
MATHEMATICIL INSTRUMENTS: Their Construction, Adjustment, Testing, and Use ; comprising Drawing, Measuring, Optical, Surveying, and Astronomical Instruments. By J. F. Heather, M.A. Enlarged Edition. 12mo, 5 s. cloth.

MEASURES, WEIGHTS, and MONEYS of all NATIONS, and an Analysis of the Christian, Hebrew, and Mahometan Calendars. Entirely New Edition, Revised and Enlarged. By W. S. B. Woolhouse, F.R.A.S. $12 \mathrm{mo}, 2 s, 6 d$, cloth boards.

Compound Interest and Annuities.

THEORY of COMPOUND INTEREST and ANNUITIES; with Tables of Logarithms for the more Difficult Computations of Interest, Discount, Annuities, \&c., in all their Applications and Uses for Mercantile and State Purposes. By Fédor Thoman, of the Société Crédit Mobilier, Paris. 3rd Edit., 12mo, 4s. 6d. cl.
"A very powerful work, and the Author has a very remarkable command of his subject."-Professor A. de Morgan.

Iron and Metal Trades' Calculator.
 THE IRON AND METAL TRADES' COMPANION :

 Being a Calculator containing a Series of Tables upon a new and comprehensive plan for expeditiously ascertaining the value of any goods bought or sold by weight, from $1 s$. per cwt. to $112 s$. per cwt., and from one farthing per lb . to $1 s$. per lb . Each Table extends from one lb. to 100 tons. By T. Downie. 396 pp., 9 s., leather."A most useful set of tables, and will supply a want, for nothing like them before existed."-Building Nezus.

Iron and Steel.

'IRON AND STEEL': a Work for the Forge, Foundry, Factory, and Office. Containing Information for Ironmasters and their Stocktakers ; Managers of Bar, Rail, Plate, and Sheet Rolling Mills; Iron and Metal Founders ; Iron Ship and Bridge Builders; Mechanical, Mining, and Consulting Engineers ; Architects, Builders, \&c. By Charles Hoare, Author of 'The Slide Rule,' \&c. Eighth Edition. With folding, Scales of "Foreign Measures compared with the English Foot," and "fixed Scales of Squares, Cubes, and Roots, Areas, Decimal Equivalents, \&c." Oblong, 32mo, 6s., leather, elastic-band.
"For comprehensiveness the book has not its equal."-Iron.
Comprehensive Weight Calculator.
THE WEIGHT CALCULATOR, being a Series of Tables upon a New and Comprehensive Plan, exhibiting at one Reference the exact Value of any Weight from 1 lb. to 15 tons, at 300 Progressive Rates, from I Penny to 168 Shillings per cwt., and containing 186,000 Direct Answers, which, with their Combinations, consisting of a single addition (mostly to be performed at sight), will afford an aggregate of 10,266,000 Answers ; the whole being calculated and designed to ensure Correctness and promote Despatch. By Henry Harben, Accountant, Sheffield. New Edition. Royal 8vo, Il. 5s., strongly half-bound.
Comprehensive Discount Guide.
THE DISCOUNT GUIDE : comprising several Series of Tables for the use of Merchants, Manufacturers, Ironmongers, and others, by which may be ascertained the exact profit arising from any mode of using Discounts, either in the Purchase or Sale of Goods, and the method of either Altering a Rate of Discount, or Advancing a Price, so as to produce, by one operation, a sum that will realise any required profit after allowing one or more Discounts : to which are added Tables of Profit or Advance from $1 \frac{1}{4}$ to 90 per cent., Tables of Discount from $I^{\frac{1}{4}}$ to $98 \frac{3}{4}$ per cent., and Tables of Commission, \&c., from $\frac{1}{8}$ to io per cent. By Henry Harben, Accountant. New Edition. Demy 8vo, il. 5s., half-bound.

SCIENCE AND ART.

The Construction of the Organ.

PRACTICAL ORGAN BUILDING. By W. E. DICKSon,
M. A., Precentor of Ely Cathedral. Crown 8vo, 5s. cloth.
"In many respects the book is the best that has yet appeared on the subject. We cordially recommend it."-English Mechanic.
"Any practical amateur following the instructions here given might build an organ to his entire satisfaction."-Leeds Mercury.

Dentistry.

MECHANICAL DENTISTRY. A Practical Treatise on the Construction of the various kinds of Artificial Dentures. Comprising also Useful Formulæ, Tables, and Receipts for Gold Plate, Clasps, Solders, etc., etc. By Charles Hunter. With numerous Wood Engravings. Crown 8vo, 7s. 6d. cloth.
"The work is very practical."-Monthly Revieze of Dental Surgery.
"An authoritative treatise. . . . We can strongly recommend Mr. Hunter's treatise to all students preparing for the profession of dentistry, as well as to every mechanical dentist."-Dublin Foumal of Medical Science. . [and Circular.
"The best book on the subject with which we are acquainted."-Medical Press. Brewing.

A HANDBOOK FOR YOUNG BREWERS. By Herbert Edwards Wright, B.A. Crown 8vo, 3s. 6d. cloth.
"A thoroughly scientific treatise in popular language. It is evident that the author has mastered his subject in its scientific aspects."-Morning Advertiser.
"We would particularly recommend teachers of the art to place it in every pupil's hands, and we feel sure its perusal will be attended with advantage."-Brezver.

Gold and Gold-Working.

THE GOLDSMITH'S HANDBOOK: containing full instructions for the Alloying and Working of Gold. Including the Art of Alloying, Melting, Reducing, Colouring, Collecting and Refining. The processes of Manipulation, Recovery of Waste, Chemical and Physical Properties of Gold, with a new System of Mixing its Alloys; Solders, Enamels, and other useful Rules and Recipes, \&c. By George E. Gee, Goldsmith and Silversmith. Second Edition, considerably enlarged. $12 \mathrm{mo}, 3 \mathrm{~s} .6 \mathrm{~d}$. cloth boards.
"The best work yet printed on its subject for a reasonable price. '-Fezeeller.
"We consider that the trade owes not a little to Mr. Gee, who has in two volumes compressed almost the whole of its literature, and we doubt not that many a young beginner will owe a part of his future success to a diligent study of the pages which are peculiarly well adapted to his use."-Clerkenwell Press.
"Essentially a practical manual, well adapted to the wants of amateurs and apprentices, containing trustworthy information that only a practical man can supply."-English Mechanic.
Silver and Silver Working.
THE SILVERSMITH'S HANDBOOK, containing full Instructions for the Alloying and Working of Silver, including the different modes of refining and melting the metal, its solders, the preparation of imitation alloys, \&c. By George E. Gee, Jeweller, \&c. $12 \mathrm{mo}, 3$ s. 6 d . cloth boards.
"The chief merit of the work is its practical character. The workers in the trade will speedily discover its merits when they sit down to study it."-English Mechanic.
"This work forms a valuable sequel to the author's Practical Goldworker, and supplies a want long felt in the silver trade."-Silversmith's Trade Fournal.

Electric Lighting.

ELECTRIC LIGHT : Its Production and Use, embodying plain Directions for the Working of Galvanic Batteries, Electric Lamps, and Dynamo-Electric Machines. By J. W. Urquhart, C. E., Author of "Electroplating : a Practical Handbook." Edited by F. C. Webb, M.I.C.E., M.S.T.E. With 94 Illustrations. Crown 8vo, 7s. 6d. cloth.
" It is the only work at present available, which gives a general but concise history of the means which have been adopted up to the present time in producing the electric light."-Metropolitan.
"An important addition to the literature of the electric light. Students of the subject should not fail to read it."-Colliery Guardian.
Electroplating, $\mathcal{G} c$.
ELECTROPLATING: A Practical Handbook. By J. W. Urquhart, C.E. Crown 8vo, 5s. cloth.
"A large amount of thoroughly practical information."-Telegraphic Yournat.
"An excellent practical manual."-Engineering.
"The information given appears to be based on direct personal knowledge. . . . Its science is sound, and the style is always clear."-Athenaum.
"Any ordinarily intelligent person may become an adept in electro-deposition with a very little science indeed, and this is the book to show him or her the way." -Builder.
"The volume is without a rival in its particular sphere."-Design and Work.
Electrotyping, \&ic.
ELECTROTYPING: a Practical Manual on the Reproduction and Multiplication of Printing Surfaces and Works of Art by the Electro-deposition of Metals. By J. W. Urquhart, C.E. Crown 8vo, 5 s. cloth.
"Will serve as a guide, not only to beginners in the art, but to those who still practise the old and imperfect methods of electrotyping."-Iron.
"'The book throughout is entirely practical, is lucid and clear in style, and the minutest details are so stated that amateurs will find no difficulty whatever in following them out. We have no hesitation in recommending it as a reliable work."Paper and Printing Trades Fournal.

The Military Sciences.

AIDE-MEMOIRE to the MILITARY SCIENCES. Framed from Contributions of Officers and others connected with the different Services. Originally edited by a Committee of the Corps of Royal Engineers. Second Edition, most carefully revised by an Officer of the Corps, with many additions ; containing nearly 350 Engravings and many hundred Woodcuts. 3 vols, royal 8vo, extra cloth boards, and lettered, 4l. ios.

Field Fortification.

A TREATISE on FIELD FORTIFICATION, the ATTACK of FORTRESSES, MILITARY MINING, and RECON. NOITRING. By Colonel I. S. Macaulay, late Professor of Fortification in the R. M. A., Woolwich. Sixth Edition, crown 8vo, cloth, with separate Atlas of 12 Plates, 125 . complete.

Dye-Wares and Colours.

THE MANUAL of COLOURS and DYE-WARES: their Properties, Applications, Valuation, Impurities, and Sophistications. For the Use of Dyers, Printers, Drysalters, Brokers, \&c. By J. W. Slater. Post 8vo, 7s. 6d. cloth.

The Alkali Trade-Sulphuric Acid, EGc.

A MANUAL OF THE ALKALI TRADE, including the Manufacture of Sulphuric Acid, Sulphate of Soda, and Bleaching Powder. By John Lomas, Alkali Manufacturer, Newcastle-uponTyne and London. With 232 Illustrations and Working Drawings, and containing 386 pages of text. Super-royal 8vo, $2 l$ 12s. $6 d$. cloth.
This work provides (I) a Complete Handbook for intending Alkali and Sulphuric Acid Manufacturers, and for those already in the field who desire to improve their plant, or to become practically acquainted with the latest processes and developments. of the trade; (2) a Handy Volume which Manufacturers can put into the hands of their Managers and Foremen as a useful guide in their daily rounds of duty.

Synopsis of Contents.

Chap. I. Choice of Site and General IX. Carbonating or Finishing-X. Soda Plan of Works-II. Sulphuric AcidIII. Recovery of the Nitrogen Compounds, and Treatment of Small Pyrites -IV. The Salt Cake Process-V. Legislation upon the Noxious Vapours Ques-tion-VI. The 'Hargreaves' and Jones' Processes-VII. The Balling ProcessVIII. Lixiviation and Salting Down-

Crystals - XI. Refined Alkali - XII. Caustic Soda - XIII. Bi-carbonate of Soda-XIV. Bleaching Powder-XV. Utilisation of Tank Waste-XVI. General Remarks-Four Appendices, treating of Yields, Sulphuric Acid Calculations, Anemometers, and Foreign Legislation upon the Noxious Vapours Question.
"The author has given the fullest, most practical, and, to all concerned in the alkali trade, most valuable mass of information that, to our knowledge, has been published in any language."-Engineer.
"This book is written by a manufacturer for manufacturers. The working details of the most approved forms of apparatus are given, and these are accompanied by no less than 232 wood engravings, all of which may be used for the purposes of construction. Every step in the manufacture is very fully described in this manual, and each improvement explained. Everything which tends to introduce economy into the technical details of this trade receives the fullest attention. The book has been produced with great completeness."-Athenceum.
"The author is not one of those clever compilers who, on short notice, will 'read up' any conceivable subject, but a practical man in the best sense of the word. We find here not merely a sound and luminous explanation of the chemical principles of the trade, but a notice of numerous matters which have a most important bearing on the successful conduct of alkali works, but which are generally overlooked by even the most experienced technological authors. This most valuable book, which we trust will be generally appreciated, we must pronounce a credit alike to its author and to the enterprising firm who have undertaken its publication."-Chemical Reviez.

Chemical Analysis.

THE COMMERCIAL HANDBOOK of CHEMICAL ANA. LYSIS ; or Practical Instructions for the determination of the Intrinsic or Commercial Value of Substances used in Manufactures, in Trades, and in the Arts. By A. Normandy, Author of "Practical Introduction to Rose's Chemistry," and Editor of Rose's "Treatise on Chemical Analysis." Nere Edition. Enlarged, and to a great extent re-written, by Henry M. Noad, Ph. D., F.R.S. With numerous Illustrations. Cr. 8vo, $12 s .6 d$. cloth.
"We recommend this book to the careful perusal of every one; it may be truly affirmed to be of universal interest, and we strongly recommend it to our readers as a guide, alike indispensable to the housewife as to the pharmaceutical practitioner."Medical Times.
"Essential to the analysts appointed under the new Act. The most recent results are given, and the work is well edited and carefully written."-Nature.

Dr. Lardner's Museum of Science and Art.

 THE MUSEUM OF SCIENCE AND ART. Edited by Dionysius Lardner, D.C.L., formerly Professor of Natural Philosophy and Astronomy in University College, London. With upwards of 1200 Engravings on Wood. In 6 Double Volumes. Price $£_{1}$ I s. . in a new and elegant cloth binding, or handsomely bound in half morocco, $3 \mathrm{Is} .6 d$.
OPINIONS OF THE PRESS.

"This series besides affording pupular but sound instruction on scientific subjects, with which the humblest man in the country ought to be acquainted, also undertakes that teaching of 'common things' which every well-wisher of his kind is anxious to promote. Many thousand copies of this serviceable publication have been printed, in the belief and hope that the desire for instruction and improvement widely prevails; and we have no fear that such enlightened faith will meet with disappoint-ment."--Times.
"A cheap and interesting publication, alike informing and attractive. The papers combine subjects of importance and great scientific knowledge, considerable inductive powers, and a popular style of treatment."-Spectator.
"The 'Museum of Science and Art' is the most valuable contribution that has ever been made to the Scientific Instruction of every class of society."-Sir David Brewster in the North British Review.
"Whether we consider the liberality and beauty of the illustrations, the charm of the writing, or the durable interest of the matter, we must express our belief that there is hardly to be found among the new books, one that would be welcomed by people of so many ages and classes as a valuable present."-Examiner.
** Separate books formed from the above, suitable for Workmen's Libraries, Science Classes, Eoc.
COMMON THINGS EXPLAINED. Containing Air, Earth, Fire, Water, Time, Man, the Eye, Locomotion, Colour, Clocks and Watches, \&c. 233 Illustrations, cloth gilt, 5 s.
THE MICROSCOPE. Containing Optical Images, Magnifying Glasses, Origin and Description of the Microscope, Microscopic Objects, the Solar Microscope, Microscopic Drawing and Engraving, \&c. 147 Illustrations, cloth gilt, $2 s$.
POPULAR GEOLOGY. Containing Earthquakes and Volcanoes, the Crust of the Earth, etc. 20I Illustrations, cloth gilt, $2 s .6 d$.
POPULAR PHYSICS. Containing Magnitude and Minuteness, the Atmosphere, Meteoric Stones, Popular Fallacies, Weather Prognostics, the Thermometer, the Barometer, Sound, \&c. 85 Illustrations, cloth gilt, 2s. 6 d .
STEAM AND ITS USES. Including the Steam Engine, the Locomotive, and Steam Navigation. 89 Illustrations, cloth gilt, $2 s$.
POPULAR ASTRONOMY. Containing How to Observe the Heavens. The Earth, Sun, Moon, Planets. Light, Comets, Eclipses, Astronomical Influences, \&c. 182 Illustrations, 4s. $6 d$.
THE BEE AND WHITE ANTS: Their Manners and Habits. With Illustrations of Animal Instinct and Intelligence. 135 Illustrations, cloth gilt, $2 s$.
THE ELECTRIC TELEGRAPH POPULARISED. To render intelligible to all who can Read, irrespective of any previous Scientific Acquirements, the various forms of Telegraphy in Actual Operation. ioo Illustrations, cloth gilt, is. $6 d$.

Dr. Lardner's Handbooks of Natural Philosophy.

*** The following five volumes, though each is Complete in itself, and to be purchased separately, form A Cumplete Course of Natural Philosophy, and are intended for the general reader who desires to attain accurate knowledge of the various departments of Physical Science, without pursuing them according to the more profound methods of mathematical investigation. The style is studiously popular. It has been the author's aim to supply Manuals such as are required by the Student, the Engineer, the Artisan; and the superior classes in Schools.
THE HANDBOOK OF MECHANICS. Enlarged and almost rewritten by Benjamin Loewy, F.R.A.S. With 378 Illustrations. Post 8vo, 6s, cloth.
"The perspicuity of the original ha. been retained, and chapters which had become obsolete, have been replaced by others of more modern character. The explanations throughout are studiously popular, and care has been taken to show the application of the various branches of physics to the industrial arts, and to the practical business of life."--Mining Fourral.
THE HANDBUOK of HYDKOSTATICS and PNEUMATICS. New Edition, Revised and Enlarged by Benjamin Loewy, F.R.A.S. With 236 Illustrations. Post 8vo, 5s. cloth.
"For those ' who desire to attain an accurate knowledge of physical science without the profound methods, "f mathematical investugation,' this work is not merely intended, but well adapted."-Chemical Newes.
THE HANDBUOK OF HEAT. Edited and almost entirely Rewritten by Benjamin Loewy, F.R.A.S., etc. 117 Illustrations. Post 8vo, 6 s . cloth.
"The style is always clear and precise, and conveys instruction without leaving any cloudiness or lurking doubts behind."-Eng ineering.
THE HANDBOOK OF UPTICS. New Edition. Edited by T. Olver Harding, B. A. 298 Illustrations. Post 8vo, 5s. cloth.
" Written by one of the ablest English scientific writers, beautifully and elaborately illustrated."-Mechanics' Magazine.
THE HANDBOOK UF ELECTRICITY, MAGNETISM, and ACOUSTICS. New Edition. Edited by Geo. Carey Fos'ter, B. A., F.C.S. With 400 Illustrations. Post $8 \mathrm{vo}, 5$ s. cloth.
"The book could not have been entrusted to any one better calculated to preserve the terse and lucid style of Lardner, while correcting his errors and bringing up his work to the present state of scientific knowledge."-Popular Science Review.

Dr. Lardner's Handbook of Astronomy.

THE HANDBOOK OF ASTRONOMY. Forming a Companion to the "Handbooks of Natural Philosophy." By Dionysius Lardner, D.C.L., formerly Professor of Natural Philosophy and Astronomy in University College, London. Fourth Edition. Revised and Edited by Edwin Dunkin, F.R.S., Royal Observatory, Greenwich. With 38 Plates and upwards of 100 Woodcuts. In I vol., small 8 vo , 550 pages, 9 s. $6 d$., cloth.
"Probably no other book contains the same amount of information in so compendious and well-arranged a form-certainly none at the price at which this is offered to the public."-Athencum.
"We can do no other than pronounce this work a most valuable manual of astronomy, and we strongly recommend it to all who wish to acquire a general-but at the same time correct-acquaintance with this sublime science."- Quarterly fournal of Science.

[^19]
Dr. Lardner's School Handbooks.
 natural philosophy for schools. By Dr. Lardner. 328 Illustrations. Sixth Edition. I vol. 3s. $6 d$. cloth.
 "Conveys, in clear and precise terms, general notions of all the principal divisions of Physical Science."-British Quarterly Revierw
 ANIMAL PHYSIOLOGY FOR SCHOOLS. By Dr. Lardner. With 190 Illustrations. Second Edition. I vol. 3s. 6d. cloth.
 "Clearly written, well arranged, and excellently illustrated."-Gardeners'Chronicle.

 Dr. Lardner's Electric Telegraph. the Electric telegraph. By Dr. Lardner. New Edition. Revised and Re-written, by E. B. Bright, F.R.A.S. 140 Illustrations. Small 8vo, 2s. 6d. cloth."One of the most readable books extant on the Electric Telegraph."-Eng. Mechanic. Electricity.

A MANUAL of ELECTRICITY; including Galvanism, Magnetism, Diamagnetism, Electro-Dynamics, Magneto-Electricity, and the Electric Telegraph. By Henry M. Noad, Ph.D., F.C.S. Fourth Edition, with 500 Woodcuts. 8vo, rl. 4s. cloth.
"The accounts given of electricity and galvanism are not only complete in a scientific sense, but, which is a rarer thing, are popular and interesting."-Lancet.
Text-Book of Electricity.
THE STUDENT'S TEXT-BOOK OF ELECTRICITY. By Henry M. Noad, Ph.D., F.R.S., F.C.S. New Edition, carefully Revised. With an Introduction and Additional Chapters by W. H. Preece, M.I.C. E., Vice-President of the Society of Telegraph Eugineers, \&c. With 470 Illustrations. Crown 8vo, 12 s . 6d. cloth.
"A reflex of the existing state of Electrical Science adapted for students."Wi. H. Preece, Esq., vide "Introduction."
"We can recommend Dr. Noad's bouk for clear style, great range of subject, a good index, and a plethora of woodcuts. Such collections as the present are indis-pensable."-A Athentrum.
"An admirable text-book for every student-beginner or advanced-of electricity." -Engineering.
"Recommended to students as one of the best text-books on the subject that they can have. Mr. Preece appears to have introduced all the newest inventions in the shape of telegraphic, telephonic, and electric-lighting apparatus."-Enslish Mechanic.
"The work contains everything that the student can require."-Academy.
"One of the best and most useful compendiums of any branch of science in our literature."-Iron.
"Under the editorial hand of Mr. Preece the late Dr. Noad's text book of electricity has grown into an admirable handbook."-Westminster Reviezu.
Carriage Building, \&oc.
COACH BUILDING: a Practical Treatise, Historical and Descriptive, containing full information of the various Trades and Processes involved, with Hints on the proper Keeping of Carriages, \&c. With 57 Illustrations. By James W. Burgess. i2mo, 3 s. cloth boards.
[7ust published.

Geology and Genesis.

THE TWIN RECORDS OF CREATION ; or, Geology and Genesis, their Perfect Harmony and Wonderful Concord. By George W. Victor le Vaux. Fcap. 8vo, 5s. cloth.
"A valuable contribution to the evidences of revelation, and disposes very, conclusively of the arguments of those who would set G.,d': Works against God's Word. No real difficulty is shirked, and no sophistry is left unexposed."-The Rock.

Science and Scripture.
SCIENCE ELUCIDATIVE OF SCRIPTURE, AND NOT ANTAGONISTIC TO IT; being a Series of Essays on-i. Alleged Discrepancies; 2. The Theory of the Geologists and Figure of the Earth ; 3. The Mosaic Cosnıogony ; 4. Miracles in general-Views of Hume and Powell ; 5. The Miracle of JoshuaViews of Dr. Colenso: The Supernaturally Impossible ; 6. The Age of the Fixed Stars, \&c. By Prof. J. R. Young. Fcap. 5s. cl. Geology.

A CLASS-BOOK OF GEOLOGY: Consisting of "Physical Geology," which sets forth the Leading Principles of the Science; and "Historical Geology," which treats of the Mineral and Organic Conditions of the Earth at each successive epoch, especial reference being made to the British Series of Rocks. By Ralph Tate. With more than 250 Illustrations. Fcap. 8vo, 5s. cloth.
Practical Philosophy.
a Synopsis of practical philosophy. By Rev. John Carr, M.A., late Fellow of Trin. Coll., Camb. 18mo, 5s. cl. Mollusca.

A MANUAL OF THE MOLLUSCA; being a Treatise on Recent and Fossil Shells. By Dr. S. P. Woudward, A.L.S. With Appendix by Ralph Tate, A.L.S., F.G.S. With numerous Plates and 300 Woodcuts. 3rd Edition. Cr. 8vo, 7s. 6d. cloth. Clocks, Watches, and Bells. RUDIMENTARY TREATISE on CLOCKS, and WATCHES, and BELLS. By Sir Edmund Beckett, Bart. (late E. B. Denison), LL.D., Q.C., F.R.A.S. Sixth edition, revised and enlarged. Limp cloth (No. 67, Weale's Series), 4s. 6d.; cloth bds. 5s. 6 d .
"As a popular and practical treatise it is unapproached."-English/L Mechanic.
"The best work on the subject probably extant. The treatise on bells is undoubtedly the best in the language."- Engineering.
"The only nodern treatise on clock-making."-Horological Fournal.
Grammar of Colouring.
A GRAMMAR OF COLOURING, applied to Decorative Painting and the Arts. By George Field. New edition, enlarged. By Ellis A. Davidson. With new Coloured Diagrams and Engravings. 12mo, 3s. 6 d . cloth.
"The book is a most useful résumé of the properties of pigments."-Builder.
Pictures and Painters.
THE PICTURE AMATEUR'S HANDBOOK AND DIC. TIONARY OF PAINTERS: A Guide for Visitors to Picture Galleries, and for Art-Students, including methods of Painting, Cleaning, Re-Lining, and Restoring, Principal Schools of Painting, Copyists and Imitators. By Philippe Daryl, B.A. Cr. $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d} . \mathrm{cl}$. Woods and Marbles (Imitation of). SCHOOL OF PAINTING FOR THE IMITATION OF WOODS AND MARBLES, as Taught and Practised by A. R. and P. Van der Burg, Directors of the Rotterdam Painting Institution. Illustrated with 24 full-size Coloured Plates; also 12 Plain Plates, comprising 154 Figures. Folio, 2l. 12s. 6d. bound.

Delamotte's Works on Illumination \& $A l p h a b e t s$.

A PRIMER OF THE ART OF ILLUMINATION; for the use of Beginners: with a Rudimentary Treatise on the Art, Practical Directions for its Exercise, and numerous Examples taken from Illuminated MSS., printed in Gold and Colours. By F. Delamотte. Small 4to, 9s. Elegantly bound, cloth antique.
"The examples of ancient MSS. recommended to the student, which, with much good sense, the author chooses from collections accessible to all, are selected with judgment and knowledge, as well as taste."-Atheneum.
ORNAMENTAL ALPHABETS, ANCIENT and MEDI EVAL; from the Eighth Century, with Numerals ; including Gothic, Church-Text, German, Italian, Arabesque, Initials, Monograms, Crosses, \&c. Collected and engraved by F. Delamotte, and printed in Colours. New and Cheaper Edition. Royal 8vo, oblong, $2 s .6 d$. ornamental boards.
"For those who insert enamelled sentences round gilded chalices, who blazon shop legends over shop-doors, who letter church walls with pithy sentences from the Decalogue, this book will be useful."-A thenaum.
EXAMPLES OF MODERN ALPHABETS, PLAIN and ORNA. MENTAL ; including German, Old English, Saxon, Italic, Perspective, Greek, Hebrew, Court Hand, Engrossing, Tuscan, Riband, Gothic, Rustic, and Arabesque, \&c., \&c. Collected and engraved by F. Delamotte, and printed in Colours. New and Cheaper Edition. Royal 8vo, oblong, 2s. $6 d$. ornamental boards.
"There is comprised in it every possible shape into which the letters of the alphabet and numerals can be formed."-Standard.
MEDIÆVAL ALPHABETS AND INITIALS FOR ILLUMINATORS. By F. Delamotte. Containing 21 Plates, and Illuminated Title, printed in Gold and Colours. With an Introduction by J. Willis Brooks. Small 4to, $6 s$ s cloth gilt.
THE EMBROIDERER'S BOOK OF DESIGN ; containing Initials, Emblems, Cyphers, Monograms, Ornamental Borders, Ecclesias. tical Devices, Mediæval and Modern Alphabets, and National Emblems. Collected and engraved by F. Delamotte, and printed in Colours. Oblong royal 8vo, is. $6 d$. in ornamental boards.

Wood-Carving.

INSTRUCTIONS in WOOD-CARVING, for Amateurs; with Hints on Design. By A Lady. In emblematic wrapper, handsomely printed, with Ten large Plates, $2 s .6 d$.
"The handicraft of the wood-carver, so well as a book can impart it, may be learnt from 'A Lady's' publication."-A thencum.

[^20]
AGRICULTURE, GARDENING, ETC.

Youatt and Burn's Complete Grazier.
THE COMPLETE GRAZIER, and FARMER'S and CATTLEBREEDER'S ASSISTANT. A Compendium of Husbandry. By William Youatt, Esq., V.S. 12th Edition, very considerably enlarged, and brought up to the present requirements of agricultural practice. By Robert Scott Burn. One large 8vo. volume, 860 pp . with 244 Illustrations. Il. Is. half-hound.
"The standard and text-book, with the farmer and grazier."-Farmer's Magazine.
"A treatise which will remain a standard work on the subject as long as British agriculture endures."-Mark Lane Express.

> History, Structure, and Diseases of Sheep. SHEEP; THE HISTORY, STRUCTURE, ECONOMY, AND DISEASES OF. By W. C. Spooner, M.R.V.C., \&c. Fourth Edition, with fine engravings, including specimens of New and Improved Breeds. $366 \mathrm{pp} ., 4 s$. cloth.

Production of Meat.

MEAT PRODUCTION. A Manual for Producers, Distributors, and Consumers of Butchers' Meat. Being a treatise on means of increasing its Home Production. Also comprehensively treating of the Breeding, Rearing, Fattening, and Slaughtering of Meatyielding Live Stock; Indications of the Quality; Means for Preserving, Curing, and Cooking of the Meat, etc. By John Ewart. Numerous Illustrations. Cr. 8vo, 5 s. cloth.
"A compact and handy volume on the meat question, which deserves serious and thoughtful consideration at the present time."-Meat and Provision Trades' Review.

Donaldson and Burn's Suburban Farming. SUBURBAN FARMING. A Treatise on the Laying Out and Cultivation of Farms adapted to the produce of Milk, Butter and Cheese, Eggs, Poultry, and Pigs. By the late Professor John Donaldson. With considerable Additions, Illustrating the more Modern Practice, by R. Scott Burn. With Illustrations. Second Edition. $12 \mathrm{mo}, 4 s$. cloth boards.

Modern Farming.
OUTLINES OF MODERN FARMING. By R. Scott Burn. Soils, Manures, and Crops-Farming and Farming EconomyCattle, Sheep, and Horses-Management of the Dairy, Pigs, and Poultry-Utilisation of Town Sewage, Irrigation, \&c. New Edition. In I vol. 1250 pp ., half-bound, profusely illustrated, i2s.
"There is sufficient stated within the limits of this treatise to prevent a farmer from going far wrong in any of his operations."-Observer.
Kitchen Gardening.
KITCHEN GARDENING MADE EASY. Showing how to prepare and lay out the ground, the best means of cultivating every known Vegetable and Herb, etc. By George M. F. Glenny. $12 \mathrm{mo}, 2 \mathrm{~s}$. cloth boards.

The Management of Estates.

LANDED ESTATES MANAGEMENT: Treating of the Varieties of Lands, Methods of Farming, the Setting-out of Farms, Construction of Roads and Farm Buildings, of Waste or Unproductive Lands, Irrigation, Drainage, \&c. By R. Scott Burn. Second Edition. 12mo, 3s. cloth.
"A complete and comprehensive outline of the duties appertaining to the manage-

The Management of Farms.

OUTLINES OF FARM MANAGEMENT, and the Organization of Farm Labour. Treating of the General Work of the Farm, Field, and Live Stock, Details of Contract Work, Specialties of Labour, Economical Management of the Farmhouse and Cottage, Domestic Animals, \&c. By Robert Scott Burn. 12mo, 3 s. Management of Estates and Farms.

LANDED ESTATES AND FARM MANAGEMENT. By R. Scott Burn, With Illustrations. Consisting of the above Two Works in One vol., 6s. half-bound.
English Agriculture.
THE FIELDS OF GREAT BRITAIN. A Text-book of Agriculture, adapted to the Syllabus of the Science and Art Department. For Elementary and Advanced Students. By Hugh Clements (Board of Trade). With an Introduction by H. Kains-Jackson. 18mo, $2 s .6 \mathrm{~d}$. cloth. [Fust published.
"A clearly written description of the ordinary routine of English farm-life."-Land.
"A carefully written text-book of Agriculture."-Athencaun.
"A most comprehensive volume, giving a mass of information."-Agricultural Economist.

Culture of Fruit Trees.

FRUIT TREES, the Scientific and Profitable Culture of. From the French of Du Breuil, revised by Geo. Glenny. I2mo, 4 s. Good Gardening.

A PLAIN GUIDE TO GOOD GARDENING; or, How to Grow Vegetables, Fruits, and Flowers. With Practical Notes on Soils, Manures, Seeds, Planting, Laying-out of Gardens and Grounds, \&c. By S. Wood. Third Edition. Cr. 8vo, 5s. cloth.
"A very good book, and one to be highly recommended as a practical guide. The practical directions are excellent."-A thenceum.
Gainful Gardening.
MULTUM-IN-PARVO GARDENING; or, How to make One Acre of Land produce $£ 620$ a year, by the Cultivation of Fruits and Vegetables ; also, How to Grow Flowers in Three Glass Houses, so as to realise $£ 176$ per annum clear Profit. By Samuel Wood. 3rd Edition, revised. Cr. 8vo, 2s. cloth.
"We are bound to recommend it as not only suited to the case of the amateur and gentleman's gardener, but to the market grower."- Cardever's Magazine.
Early Fruits, Flowers and Vegetables.
TIIE FORCING GARDEN : or, How to Giow Early Fruits, Fluwers, and Vegetables. With Plans and Estimates showing the best and most econom:cal way of Building Glasshonses, Pits, and Frames for the various classes, \&c. By Samuel Wood, Author of "Good Gardening," \&c. Crown 8vo, 3s. 6d. [7ust published.

Gardening for Ladies.
THE LADIES' MULTUM-IN-PARVO FLOWER GARDEN, and Amateur's Complete Guide. By Samuel Wood. Author of "Good Gardening," \&c. With Illustrations. Crown 8vo, 3s. 6d. cloth.
[Fust published.
Bulb Culture.
THE BULB GARDEN, or, How to Cultivate Bulbous and Tuberous-rooted Flowering, Plants to Perfection. A Manual adapted for both the Professional and Amateur Gardener. By Samuel Wood, Author of "Good Gardening," etc. With Coloured Illustrations and Wood Engravings. Cr. 8vo, 3s. 6d. cloth. Tree Planting:

THE TREE PLANTER AND PLANT PROPAGATOR: Eeing a Practical Manual on the Propagation of Forest Trees, Fruit Trees, Flowering Shrubs, Flowering Plants, Pot Herbs, \&c. Numerous Illustrations. By Samuel Wood. 12mo, 2s. 6 d . cloth. Tree Pruning.

THE TREE PRUNER: Being a Practical Manual on the Pruning of Fruit Trees. Including also their Training and Renovation, also treating of the Pruning of Shrubs, Climbers, and Flowering Plants. By Samuel Wood. 12mo, 2 s .6 d . cloth.
Tree Planting, Pruning, ©゚ Plant Propagation. THE TREE PLANTER, PROPAGATOR, AND PRUNER. By Samuel Wood, Author of "Good Gardening," \&c. Consisting of the above Two Works in One Vol., 5 s. half-bound.

Potato Culture.

 POTATOES, HOW TO GROW AND SHOW THEM: A Practical Guide to the Cultivation and General Treatment of the Potato. By James Pink. With Illustrations. Cr. 8vo, 2s. cl.Hudson's Tables for Land Valuers. THE LAND VALUER'S BEST ASSISTANT: being Tables, on a very much improved Plan, for Calculating the Value of Estates. With Tables for reducing Scotch, Irish, and Provincial Customary Acres to Statute Measure, \&c. By R. Hudson, C. E. New Edition, royal 32 mo , leather, gilt edges, elastic band, $4 s$.
Ewart's Land Improver's Pocket-Book.
THE LAND IMPROVER'S POCKET-BOOK OF FOR. MULÆ, TABLES, and MEMORANDA, required in any Computation relating to the Permanent Improvement of Landed Property. By John Ewart, Land Surveyor and Agricultural Engineer. Royal 32 mo , oblong, leather, gilt edges, with elastic band, 4 s .
Complete Agricultural Surveyor's Pocket-Book. THE LAND VALUER'S AND LAND IMPROVER'S COM. PLETE POCKET-B()OK ; consisting of the above two works bound together, leather, gilt edges, with strap, 7 s .6 d .
"We consider Hudson's book to be the best ready-reckoner on matters relating to the valuation of land and crops we have ever seen, and its combination with Mr. Ewart's work greatly enhances the value and usefulness of the latter-mentioned.It is most useful as a manual for reference."-North of England Farmer.

A Complete Epitome of the Laws of this Country. EVERY MAN'S OWN LAWYER; a Handy-Book of the Prin-

 ciples of Law and Equity. By A Barrister. New Edition, much enlarged. Corrected to the end of last Session. With Notes and References to the Authorities. Crown Svo, cloth, price, $6 s .8 d$. (saved at every consultation).COMPRISING THE RIGH'TS AND WRONGS OF INDIVIDUALS,
MERCANTILE AND COMMERCIAL LAW, CRIMINAL LAW, PARISH LAW, COUNTY COURT LAW, GAME AND FISHERY LAWS, POOR MEN'S

LAW, THE LAWS OF
Bankruptcy-Bills of Exchange- \mid Settlements-Stock Exchange PracContracts and Agreements-Cory- tice-Trade Marks and Patents-right-Dower and Divorce-Elections and Registration-Insurance -Libel and Slander-Mortgages-

Also Law for Landlord and TenantMaster and Servant-Workmen and Ap-prentices-Heirs, Devisees, and Legatees - Husband and Wife - Executors and Trustees - Guardian and Ward Married Women and Infants-Partners and Agents - Lender and Borrower Debtor and Creditor - Purchaser and Trespass, Nuisances, etc.-Transfer of Land, etc. - Warranty - Wills and Agreements, etc.
-Friendly Societies-Clergymen, Church-wardens-Medical Practitioners, \&c. Bankers - Farmers - Contractors-Stock and Share Brokers-Sportsmen and Game-keepers-Farriers and Horse-DealersAuctioneers, House-Agents-Innkeepers, \&c. - Pawnbrokers - Surveyors - Railways and Carriers, \&c., \&c. Vendor - Companies and Associations
" No Englishman ought to be without this book."-Engineer.
"What it professes to be-a complete epitome of the laws of this country, thoroughly intelligible to non-professional readers. The book is a handy one to have in readiness when some knotty point requires ready solution."-Bell's Life.
"A useful and concise epitome of the law."-Law Magazine.
Auctioneer's Assistant.
THE APPRAISER, AUCTIONEER, BROKER, HOUSE AND ESTATE AGENT, AND VALUER'S POCKET ASSISTANT, for the Valuation for Purchase, Sale, or Renewal of Leases, Annuities, and Reversions, and of property generally; with Prices for Inventories, \&c. By John Wheeler, Valuer, \&c. Fourth Edition, enlarged, by C. Norris. Royal 32mo, cloth, 5 s.
" A concise book of reference, containing a clearly-arranged list of prices for inventories, a practical guide to determine the value of furniture, \&c."-Standard. Auctioneering.

AUCTIONLERS: THEIR DUTIES AND LIABILITIES. By Robert Squibbs, Auctioneer. Demy 8vo, ios. 6d. cloth. House Property.

HANDBOOK OF HOUSE PROPERTY : a Popular and Practical Guide to the Purchase, Mortgage, Tenancy, and Compulsory Sale of Houses and Land ; including the Law of Dilapidations and Fixtures, \&c. By E. L. Tarbuck. 2nd Edit. I2mo, 3s. 6d. cloth.
"We are glad to be able to recommend it."-Builder.
"The advice is thoroughly practical."-Lazw Yournal.
Metropolitan Rating.
METROPOLITAN RATING: a Summary of the Appeals heard before the Court of General Assessment Sessions at Westminster, in the years 1871-80 inclusive. Containing a large mass of very valuable information with respect to the Rating of Railways, Gas and Waterworks, Tramways, Wharves, Public Houses, \&c. By Edward and A. L. Ryde. Svo, 12s. 6d. [7ust published.

Wetrale se finnimentaty gevies.

PHILADELPHIA, 1876. THE PRIZE MEDAL Was awarded to the Publishers for Books: Rudimentary, Scientific, "WEALE'S SERIES," ETC.

A NEW LIST OF WEALE'S SERIES

RUDIMENTARY SCIENTIFIC, EDUCATIONAL, AND CLASSICAL.

Comprising nearly Three Hundred and Fifty distinct works in almost every department of Science, Art, and Education, recommended to the notice of Engineers, Architects, Builalers, Artisans, and Students generally, as well as to those interested in Workmen's Libraries, Literary and Scientific Institutions, Colleges, Schools, Science Classes, Eva., \&oc.
"WEALE'S SERIES includes Text-Boors on almost every branch of Science and Industry, comprising such subjects as Agriculture, Architecture and Buildiag, Civil Engineering, Fine Arts, Mechanics and Mechanical Engineering, Physical and Chemical Science, and many miscellaneous Treatises. The whole are constantly undergoing revision, and new editions, brought up to the latest discoveries in scientific research, are constantly issued. The prices at which they are sold are as low as their excellence is assured." -A merican Literary Gazette.
"Amongst the literature of technical education, WEALE's SERIES has ever enjoyed a high reputation, and the additions being made by Messrs. Crosby LOCKWOOD \& CO. render the series even more complete, and bring the information upon the several subjects down to the present time."-Mining fournal.
"It is impossible to do otherwise than bear testimony to the value of Weale's Series." -Engineer.
"Everybody-even that outrageous nuisance 'Every Schoolboy'-knows the merits of 'Weale's Rudimentary Series.' Any persons wishing to acquire knowledge cannot do better than look through Weale's Series and get all the books they require. The Series is indeed an inexhaustible mine of literary wealth."-The Metropolitan.
" WEALE'S SERIES has become a standard as well as an unrivalled collection of treatises in all branches of art and science."-Public Opinion.

7, STATIONERS' HALL COURT, LUDGATE HILL, LONDON, E.C.

Abstract

No. ARCHITECTURE, BUILDING, ETC. 16. ARCHITECTURE-ORDERS-The Orders and their Estheti Principles. By W. H. Leeds. Illustrated. is. 6d. 17. ARCHITECTURE-STYLES-The History and Description o: the Styles of Architecture of Various Countries, from the Earliest to thi Present Period. By T. Talbot Bury, F.R.I.B.A., \&c. Illustrated. 2 s . ${ }^{*} *^{*}$ Orders and Styles of Architycture, in One Vol., 3 s. $6 d$. 18. ARCHITECTURE-DESIGN--The Principles of Design is Architecture, as deducible from Nature and exemplified in the Works of th. Greek and Gothic Architects. By E.L. Garbetr, Architect. Illustrated. 2s.6d *** The three preceding Works, in One handsome Vol., half bound, entitle, " Modern Architecture," price 6 s. 22. THE ART OF BUILDING, Rudiments of. General Principle: of Construction, Materials used in Building, Strength and Use of Materials Working Drawings, Specifications, and Estimates. By E. Dobson, 2s.\# 23. BRICKS AND TILES, Rudimentary Treatise on the Manufac ture of; containing an Outline of the Principles of Brickmaking. By Edw Dobson, M.R.I.B.A. With Additions by C. Tomlinson, F.R.S. Illustrated, 3 s. 25. MASONRY AND STONECUTTING, Rudimentary Treatis, on ; in which the Principles of Masonic Projection and their application t the Construction of Curved Wing-Walls, Domes, Oblique Bridges, an: Roman and Gothic Vaulting, are concisely explained. By Edward Dobson M.R.I.B.A., \&c. Illustrated with Plates and Diagrams. 2s. 6d.末 44. FOUNDATIONS AND CONCRETE WORKS, a Rudimentary Treatise on; containing a Synopsis of the principal cases of Foundation Works, with the usual Modes of Treatment, and Practical Remarks on Footings, Planking, Sand, Concrete, Béton, Pile-driving, Caissons, and Cofferdams. By E. Dobson, M.R.I.B.A., \&c. Fourth Edition, revised by George Dodd, C.E. Illustrated. rs. 6d. 42. CotTage Building. By C. Bruce Allen, Architect. Ninth Edition, revised and enlarged. Numerous Illustrations, is. 6d. 45. LIMES, CEMENTS, MORTARS, CONCRETES, MASTICS, PLASTERING, \&c. By G. R. Burnell, C.E. Eleventh Edition. is. 6 d . 57. WARMING AND VENTILATION, a Rudimentary Treatise on ; being a concise Exposition of the General Principles of the Art of Warming and Ventilating Domestic and Public Buildings, Mines, Lighthouses, Ships, \&c. By Charles Tomlinson, F.R.S., \&c. Illustrated. 3 s . 83**. CONSTR UCTION OF DOOR LOCKS. Compiled from the Papers of A. C. Hobbs, Esq., of New York, and Edited by Charles Tomlinson, F.R.S. To which is added, a Description of Fenby's Patent Locks, and a Note upon Iron Safes by Robert Mallet, M.I.C.E. Illus. 2s. 6d. iII. ARCHES, PIERS, BUTTRESSES, \&oc.: Experimental Essays on the Principles of Construction in; made with a view to their being useful to the Practical Builder. By Wiliam Bland. Illustrated. Is. 6 d .

LONDON: CROSBY LOCKWOOD AND CO.,

Architecture, Building; etc. ry $_{\text {, }}$ continued.
【16. THE ACOUSTICS OF PUBLIC BUILDINGS; or, The Principles of the Science of Sound applied to the purposes of the Architect and Builder. By T. Roger Smith, M.R.I.B.A., Architect. Illustrated. is. 6d.
!24. CONSTRUCTION OF ROOFS, Treatise on the, as regards Carpentry and Joinery. Deduced from the Works of Robison, Price, and Trebgold. Illustrated. is. 6 d .
£2\%. ARCHITECTURAL MODELLING IN PAPER, the Art of. By T. A. Richardson, Architect. Illustrated. is. 6d.
128. VITRUVIUS-THE ARCHITECTURE OF MARCUS VITRUVIUS POLLO. In Ten Bonks. Translated from the Latin by Joseph Gwilt, F.S.A., F.R.A.S. With 23 Plates. 5 s.
130. GRECIAN ARCHITECTURE, An Inquiry into the Principles of Beauty in ; with an Historical View of the Rise and Progress of the Art in Greece. By the Exrl of Aberdeen. is.
*** The two preceding Works in One handsome Vol,, half bound, entitled "Ancient Architrcture," price $6 s$.
r6, 17, 18, 128, and 130, in One Vol,, entitled "Anciewt and Modern Architecture," half beund, $12 s$.
【32. DWELLING-HOUSES, a Rudimentary Treatise on the Erection of. Illustrated by a Perspective View, Plans, Eíevations, and Sections of a pair of Semi-detached Villas, with the Specification, Quantities, and Estimates, and every requisite detail, in sequence, for their Construction and Finishing. By S. H. Broors, Architect. New Edition, with Plates. 2s. $6 \mathrm{~d} . \ddagger$
556. QUANTITIES AND MEASUREMENTS, How to Calculate and Take them in Pricklayers', Masons', Plasterers', Plumbers', Painters', Paperhangers', Gilders', Smiths', Carpenters', and 'Joiners' Work. By A. C. Beaton, Architect and Surveyor. New and Enlarged Edition. Illus. is. Sd.
175. LOCKWOOD \& CO.'S BUILDER'S AND CONTRACTOR'S, PRICE BOOK, for 188 I , containing the latest Prices of all kinds of Puilders' Materials and Labour, and of all Trades connected with Puilding : Lists of the Members of the Metropolitan Board of Works, of Districts, District Officers, and District Surveyors, and the Metropolitan Bye-laws. Edited by Francis T. W. Miliek, Architect and Surveyor. 3s. 6d.; half bound, 4 s .
882. CARPENTRY AND foiner Y-The Elementary Principifs of Carpentry. Chiefy composed from the Standard Work of Thomas Tredgold, C.E. With Additions from the Works of the most Recent Authorities, and a TKEATISE ON JOINERY by E. Wyndham Tarn, M.A. Numerous Illustrations. 3 s. $6 \mathrm{~d} . \ddagger$
182*. CARPENTR Y AND FOINERY. ATLAS of 35 Plates to accompany the foregoing book. With Descriptive Letterpress. 4to. 6s. cloth boards, 7 s . 6 d .
187. HINTS TO YOUNG ARCHITECTS. By George Wight. wick. New, Revised, and enlarged Edition. By G. Huskisson Guillaume, Architect. With numerous Woodcuts. 3 s . 6d.9.
888. HOUSE PAINTING, GRAINING, MARBLING, AND SIGN WRITING: A Practical Manual of, containing full information on the Processes of House-Painting, the Formation of Letters and Practice of Sign-Writing, the Principles of Decorative Art, a Course of Elementary Drawing for House-Painters, Writers, \& \&c., \&c. With 9 Coloured Plates of Woods and Marbles, and nearly 150 Wood Engravings. By Eliss A. Davidson. Third Edition, carefully revised. 5s. cloth limp; 6s. cloth boards.
\#89. THES RUDIMENTS OF PRACTICAL BRICKLA YINC. In Six Sections: General Principles; Arch Drawing, Cutting, and Setting ; Pointing; Paving, Tiling, Materials; Slating and Plastering; Practical Geometry, Mensuration, \&c. By Adam Hammond. Illustrated.' is. 6 d .
E91. PLUMBING. A Text-Book to the Practice of the Art or Craft of the Plumber. With Chapters upon House Drainage, embodying the latest Improvements. Third Edition, enlarged. Containing 300 Illustrations. By W. P. Buchan, Sanitary Engineer. 3 s. $6 \mathrm{~d} . \ddagger$

7, STATIONERS' HALI, COURT, LUDGATE HILL, E.C.

Architecture, Building, etc., continued.
192. THE TIMBER IMPORTER'S, TIMBER MERCHANT'S, and BUILDER'S STANDARD GUIDE; comprising copious and valuable Memoranda for the Retailer and Builder. By Richard E. Grandy. Second Edition, Revised. 3 3s.t
205. THE ART OF LETTER PAINTING MADE EASY. By J. G. Badenoch. Illustrated with 12 full-page Engravings of Examples. rs. A BOOK ON BUILDING, Civil and Ecclesiastical, including Church Restoration. With the Theory of Domes and the Great Pyramid, \&c. By Sir Edmund Beckett, Bart., LL.D., Q.C., F.R.A.S. Second Edition, enlarged, 4s. 6d. \ddagger

CIVIL ENGINEERING, ETG.

219. CIVIL ENGINEERING. By Henry Law, M.Inst. C.E. Including a Treatise on Hydraulic Enginerring by Geo. R. Burnell, M.Inst.C.E. Sixth Edition, revised, with Large Additions on Recent Practice in Civil Engineering, by D. Kinnear Ci.ark, M.Inst. C.E., Author of "Tramways: Their Construction," \&c. 6s. 6d., Cloth boards, 7s. 6d.
220. THE DRAINAGE OF DISTRICTS AND LANDS. By G. Drysdale Dempsey, C.E.
[Nezw Edition in preparation.
221. THE DRAINAGE OF TOWNS AND BUILDINGS. By G. Drysdale Dempsey, C.E. [New Edition in preparation.
222. WELL-DIGGING, BORING, AND PUMP-WORK. By John Grorge Swindell, A.R.I.B.A. New Edition, by G.R. Burnell, C.E. is. 6d.
223. THE BLASTING AND QUARRYING OF STONE, for Building and other Purposes. With Remarks on the Blowing up of Bridges. By Gen. Sir John Burgoyne, Bart., K.C.B. Illustrated. is. 6 d .
224. RAILWAY CONSTRUCTION, Elementary and Practical Instructions on the Science of. By Sir M. Stephenson, C.E. New Edition, by Edward Nugent, C.E. With Statistics of the Capital, Dividends, and Working of Railways in the United Kingdom. By E. D. Chatraway. 4 s .
80*. EMBANITING LANDS FROM THE SEA, the Practice of. Treated as a Means of Profitable Employment for Capital. With Examples and Particulars of actual Embankments, \&c. By J. Wiggins, F.G.S. 2 s .
225. WATER WORKS, for the Supply of Cities and Towns. With a Description of the Principal Geological Formations of England as influencing Supplies of Water; and Details of Engines and Pumping Machinery for raising Water. By Samuel Hughes, F.G.S., C.E. New Edition. 4s. \ddagger
226. SUBTERRANEOUS SURVEYING, an Elementary and Practical Treatise on. By Thomas Fenwick. Also the Method of Conducting Subterraneous Surveys without the Use of the Magnetic Needle, and other Modern Improvements. By Thomas Baker, C.E. Illustrated. 2s. 6d. \ddagger
227. CIVIL ENGINEERING IN NORTH AMERICA, a Sketch of. By David Stevenson, F.R.S.E., \&c. Plates and Diagrams. 3 S.
228. ROADS AND STREETS (THE CONSTRUCTION. OF), in two Parts: I. The Art of Constructing Common Roads, by Henry Law, C.E., revised and condensed by D. Kinnear Clari, C.E.; II. Recent Practice, including pavements of Stone, Wood, and Asphalte. Second Edition, revised, by D. K. Clark, M.I.C.E. 4s. $6 \mathrm{~d} . \ddagger$
229. SANITARY WORKIN THE SMALLER TOWNS AND IN VILLAGES. Comprising:-I. Some of the more Common Forms of Nuisance and their Remedies; 2. Drainage; 3. Water Supply. A useful book for Members of Local Boards and Rural Sanitary Authorities, Health Officers, Engineers, Surveyors, \&c. By Charles Slagg, A.I.C.E. 2s, $6 \mathrm{~d} . \ddagger$
230. THE CONSTRUCTION OF GAS-WORKS, and the Manufacture and Distribution of Coal Gas. Originally written by Samued Hughes, C.E. Sixth Edition, re-written and much Enlarged by William Richards, C.E. With 72 Illustrations. 4s. 6 d. \ddagger. [Fust published.
231. PIONEER ENGINEERING. A Treatise on the Engineering Operations connected with the Settlement of Waste Lands in New Countries. By Edward Dobson, Assoc. Inst. C.E. 4s. 6d.ł
The Findicates that these vois. may be had strongly bound at 6 d. extra.

MECHANICAL ENGINEERING, ETC:
33. CRANES, the Construction of, and other Machinery for Raising Heavy Bodies for the Erection of Buildings, and for Hoisting Goods. By Joseph Glyns, F.R.S., \&c. Illustrated. Is. 6 d .
34. THE STEAM ENGINE, a Rudimentary Treatise on. By Dr. Lardner. Illustrated. is. 6d.
59. STEAM BOILERS: their Construction and Management. By R. Armstrong, C.E. Illustrated. is. 6d.
67. CLOCKS, WATCHES, AND BELLS, a Rudimentary Treatise on. By Sir Edmund Beckbtt (late Edmund Beckett Denison), LL.D., Q.C. A New, Revised, and considerably Enlarged Edition (the 6th), with very numerous Illustrations. 4s. 6d. cloth limp; 5s. 6d. cloth boards, gilt.
82. THE POWER OF WATER, as applied to drive Flour Mills, and to give motion to Turbines and other Hydrostatic Engines. By Joseph Glynn, F.R.S., \&c. New Edition, Illustrated. 2s.t
98. PRACTICAL MECHANISM, the Elements of ; and Machine Tools. By T. Baker, C.E. With Remarks on Tools and Machinery, by J. Nasmyth, C.E. Plates. 2s. 6d. \ddagger
114. MACHINERY, Elementary Principles of, in its Construction and Working. By C.D. Abel, C.E. Is. 6d.
139. THE STEAM ENGINE, a Treatise on the Mathematical Theory of, with Rules and Examples for Practical Men. By T. Baker, C.E. is. 6 d .
162. THE BRASS FOUNDER'S MANUAL; Instructions for Modelling, Pattern-Making, Moulding, Turning, Filing, Burnishing, Bronzing, \&c. With copious Receipts, \&c. By Walter ${ }^{\text {Graham. }}$ 2s. \ddagger
164. MODERN WORKSHOP PRACTICE, as applied to Marine, Land, and Locomotive Engines, Floating Docks, Dredging Machines, Bridges, Cranes, Ship-building, \&c., \&c. By J. G. Winton. Illustrated. 3s.t
165. IRON $A N D$ HEAT, exhibiting the Principles concerned in the Construction of Iron Beams, Pillars, and Bridge Girders, and the Action of Heat in the Smelting Furnace. By J. Armour, C.E. $2 \mathrm{~s} .6 \mathrm{~d} . \ddagger$
166. POWER TN MOTION: Horse-Power, Toothed-Wheel Gearing, Long and Short Driving Bands, and Angular Forces. By J. Armour, 2s. $6 \mathrm{~d} . \ddagger$
167. IRON BRIDGES, GIRDERS, ROOFS, AND OTHER WORKS. By Francis Campin, C.F. 2 si . $6 \mathrm{~d} . \ddagger$
171. THE WORKMAN'S MANUAL OF ENGINEERING drawing. By John Maxton, Engineer. Fourth Edition. Illustrated with 7 Plates and nearly 350 Woodcuts. 3 s. 6 d . .
190. STEAM AND THE STEAM ENGINE, Stationary and Portable. Being an extension of Mr. John Sewell's "Treatise on Steam." By D. K. Clark, M.I.C.E. Second Edition, revised. 3s. $6 \mathrm{~d} . \ddagger$
200. FUEL, its Combustion and Economy. By C. W. Williams, A.I.C.E. With extensive additions on Recent Practice in the Combustion and Economy of Fuel-Coal, Coke, Wood, Peat, Petroleum, \&c.-by D. K. Clark, M.I.C.E. 2nd Edition. 3 s. 6 d. \ddagger
202. LoCOMOTIVE ENGINES. By G. D. Dempsey, C.E.; with large additions treating of the Modern Locomotive, by D. Kinnear Clark, M.I.C.E. 3 s..
211. THE BOILERMAKER'S ASSISTANT in Drawing, Templating, and Calculating Boiler and Tank Work. By John Courtney, Practical Boiler Maker. Edited by D. K. Clark, C.E. Ioo Illustrations. 2s. 216. MATERIALS AND CONSTRUCTION; A Theoretical and Practical Treatise on the Strains, Designing, and Erection of Works of Construction. By Francis Campin, C.E. 3s.f \quad [Fust published.
217. SEWING MACHINERY, being a Practical Manual of the Sewing Machine; comprising its History and Details of its Construction, with full Technical Directions for the Adjusting of Sewing Machines. By J. W. URQUHART, C.E. 2s.f
223. MECHANICAL ENGINEERING, A Practical Treatise on. Comprising Metallurgy, Moulding, Casting, Forging, Tools, Workshop Machinery, Mechanical Manipulation, Manufacture of the Steam Engine, \&c. By Francis Campin, C.E. 2s. 6d.t
[7ust published.
限둥 The \ddagger indicates that these vols. may be had strongly bound at $6 d$. extra.
7, STATIONERS' HALL COURT, LUDGATX HILL, E.C.

SHIPBUILDING, NAVIGATION, MARINE ENGINEERING, ETG.

5i. NAVA亡 ARCHITECTURE, the Rudiments of; or an Exposio tion of the Elementary Principles of the Science, and their Practical Application to Naval Construction. Compiled for the Use of Reginners. By James Peake, School of Naval Architecture, H.M. Dockyard, Portsnouth. Fourth Edition, corrected, with Plates and Diagrams. 3s. 6d.*
53*. SHIPS FOR OCEAN AND RIVER SERVICE, Elementary and Practical Principles of the Construction of. By Hakon A. Sommerfeldt, Surveyor of the Royal Norwegian Navy. With an Appendix, is. 6 d ,
53**. AN ATLAS OF ENGRAVINGS to Illustrate the above. Twelve large folding plates. Royal 4 to, cloth. 7 s .6 d .
54. MASTING, MAST-MAKING, AND RIGGING OF SHIPS, Rudimentary Treatise on. Also Tables of Spars, Rigging, Blocks; Chain, Wire, and Hemp Ropes, \&c., relative to every class of vessels. With an Appendix of Dimensions of Masts and Yards of the Royal Navy. By Robert $\mathrm{K}_{\text {IPPINs, }}$ N.A. Fourteenth Edition. Illastrated. 2s.f
54*. IRON SHIP-BUILDING. With Practical Examples and Details for the Use of Ship Owners and Ship Builders. By John Grantham, Consulting Engineer and Naval Arehitect. 5 th Edition, with Additions. 4 s.
54**. AN ATLAS OF FORTY PLATES to Mllustrate the above. "Fifth Edition. Including the latest Examples, such as H.M. Steam Frigates "Warrior," "Hercules," "Bellerophon;" H.M. Troop Ship "serapis," Iron Floating Dock, \&c., \&c. 4to, boards. 38 s .
55. THE SAFILOR'S SEA BOOK: a Rudimentary Treatise on Navigation. Part I. How to Keep the Log and Work it off. Part II. On Finding the Latitude and Longitude. By James Greenwood, B.A. To which are added, the Deviation and Error of the Compass; Great Circle Sailing; the International (Commercial) Code of Signals; the Rule of the Road at Sea; Rocket and Mortar Apparatus for Saving Life; the Law of Storms; and a Brief Dictionary of Sea Terms. With numerous Woodcuts and Coloured Plates of Flags. New, thoroughly revised and much enlarged edition. My W. H. Rosser. $2 \mathrm{~s} .6 \mathrm{~d} . \ddagger$
8o. MARINE ENGINES, AND STEAM VESSELS, a Treatise on. Together with Practical Remarks on the Screw and Propelling Power, as used in the Royal and Merchant Navy. Ry Robert Murray, C.E., Engineer-Surveyor to the Board of Trade. With a Glossary of Teclinical Terms, and their Equivalents in French, German, and Spanish. Seventh Edition, revised and enlarged. Inlustrated. 3 s. \ddagger
83bis. THE FORMS OF SHIPS AND BOATS: Hints, Experimentally Derived, on some of the Principles regulating Ship-building. By W.
99. NAVIGATION AND NAUTICAL ASTRONOMY, in Theory and Practice. With Attempts to facilitate the Finding of the Time and the Longitude at Sea. By J. R. Young, formerly Professor of Mathematics in Belfast College. Illustrated. 2s. 6d.
¥oo*. TABLES intended to facilitate the Operations of Navigation and Nautical Astronomy, as an Accompaniment to the above Book. By J. R. Young. 1s. 6d.
106. $S H I P S^{\prime}$, ANCHORS, a Treatise on. By G. Cotsell, N.A. Is. 6d. 149. SAILS AND SAIL-MAKING, an Elementary Treatise on. With Draughting, and the Centre of Effort of the Sails. Also, Weights and Sizes of Ropes : Masting, Rigging, and Sails of Steam Vessels, \&c., \&:c. Eleventh Edition, enlarged, with an Appendix. By Robert Kipping, N.A., Sailmaker, Quayside, Newcastle. Illustrated. ${ }^{2 \mathrm{~s} .6 \mathrm{~d} . \text {. }}$ THE ENGINEER'S GUIDE TO THE ROYAL AND mercantile navies. By a Practical Engineer. Revised by D. F. M'CARTHY, late of the Ordnance Survey Office, Southampton. 3 s.

55 PRACTICAL NAVIGATION. Consisting of The Sailor's
$\&$ Sea-Book. By James Greenwood and W. H. Rosser. Together with the requisite Mathematical and Nautical Tables for the Working of the Problems. By Henry Law, C.E., and J. R. Young, formerly Professor of Mathematics in Belfast College. Illustrated with numerous Wood Engravings and Coloured Plates. 7s. Strongly half-bound in leather.

LONDON: CROSBY LOCKWOOD AND COッ

PHYSICAL SCIENCE, NATURAL PHILOSOPHY, ETC.

r. CHEMISTR Y, for the Use of Beginners. By Professor George Fownes, F.R.S. With an Appendix on the Application of Chemistry to Agriculture. 1 s.
2. NATURAL PHILOSOPHY, Introduction to the Study of; for the Use of Beginners. By C. Tomlisson, Lecturer on Natural Science in King's College School, London. Woodcuts. 1s. 6d.
4. MINERALOGY, Rudiments of; a concise View of the Properties of Minerals. By A. Ramisay, Jun. Woodcuts and Steel Plates. 3s.t
6. MECHANICS, Rudimentary Treatise on; being a concise Exposition of the General Principles of Mechanical Science, and their Applications. By Charles Tomlinson. Illustrated. is. 6 d .
7. ELECTRICITY; showing the General Principles of Electrical Science, and the purposes to which it has been applied. By Sir W. Snow Harris, F.R.S., \&c. With Additions by R. Sabine, C.E., F.S.A. IS. 6 d.
7^{*}. GALVANISM, Rudimentary Treatise on, and the General Principles of Animal and Voltaic Electricity. By Sir W. Snow Harris. New Edition, witl considerable Additions by Robert Sabine, C.E., F.S A. is. 6 d.
8. MAGNETISM; being a concise Exposition of the General Principles of Magnetical Science, and the Purposes to which it has been applied. By Sir W. Snow Harris. New Edition, revised and enlarged by H. M. Noad, Ph.D., Vice-President of the Chemical Society, Author of "A Manual of Electricity," \&c., \&c. With r65 Woodcuts. 3S. 6d.£
11. THE ELECTRIC TELEGRAPH; its History and Progress; with Descriptions of some of the Apparatus. By R. Sabine, C.E., F.S.A. 3s.
12. PNEUMATICS, for the Use of Beginners. By Charles Tominnson. Illustrated. is. 6d.
72. MANUAL OF THE MOLLUSCA; a Treatise on Recent and Fossil Shells. By Dr. S. P. Woodward, A.L.S. Fourth Edition. With Appendix by Ralph Tate, A.L.S., F.G.S. With numerous Plates and 300 Woodcuts. 6s. 6d. Cloth boards, 7 s . 6d.
79**. PHOTOGRAPHY, Popular Treatise on; with a Description of the Stereoscope, \&c. Translated from the French of D. Van Monckhoven, by W. H. Thornthwarte, Ph.D. Woodcuts. is. 6d.
96. ASTRONOMY. By the Rev. R. MAIN, M.A., F.R.S., \&c. New Edition, with an Appendix on "Srectrum Analysis." Woodcuts. rs. 6d.
97. STATICS AND DYNAMICS, the Principles and Practice of; embracing also a clear development of Hydrostatics, Hydrodynamics, and Central Forces. By T. Baier, C.E. is. 6 d .
138. TELEGRAPH, Handbook of the; a Manual of Telegraphy, Telegraph Clerks' Remembrancer, and Guide to Candidates for Employment in the Telegraph Service. By R. Bond. Fourth Edition, revised and enlarged: to which is appended, QUESTIONS on MAGNETISM, ELECTRICITY, and PRACTICAL TELEGRAPHY, for the Use of Students, by W. McGregor, First Assistant Supnt., Indian Gov. Telegraphs. 3s. \ddagger
143. EXPERIMENTAL ESSAYS. By Charles Tomlinson. I. On the Motions of Camphor on Water. II. On the Motion of Camphor towards the Light. III. History of the Modern Theory of Dew. Woodcuts. Is.
173. PHYSICAL GEOLOGY, partly based on Major-General Portlock's "Rudiments of Geology." By Ralph Tate, A.L.S., \&c. Woodcuts. 2s. HISTORICAI GEOLOGY, partly based on Major-General Portlock's "Rudiments." By Ralph Tate, A.L.S., \&c. Woodcuts. 2s. 6d. RUDIMENTARY TREATISE ON GEOLOGY, Physical and Historical. Partly based on Major-General Portlock's "Rudiments of
174. Geology." By Ralph Tate, A.L.S., F.G.S., \&c. In One Volume. 4s. 6d.*

183 ANIMAL PHYSICS, Handbook of. By Dr. Lardner, D.C.L.,
\& formerly Professor of Natural Philosophy and Astronomy in University
184. College, Lond. With 520 Illustrations. In One Vol. 7s. 6 d ., cloth boards.
*** Sold also in Trwo Parts, as follows:-
183. Animal Physics. By Dr. Lardner. Part I., Chapters I.-VII. 4 4.
184. Animal Physics. By Dr. Lardner. Part II', Chapters Vili.-XVIIII. 3 s.

领事 The $\$$ indicates that these vols. may be had strongly bound at $6 d$. extra.
7 , STATIONERS' HALL COURT, LUDGATE HILL, E.C.

MINING, METALLURGY, ETG.

117. SUBTERRANEOUS SURVEYING, Elementary and Practical Treatise on, with and without the Magnetic Needle. By Thomas Fenwick, Surveyor of Mines, and Thomas Baker, C.E. Illustrated. 2s. 6 d .
118. METALLURGYOF COPPER; an Introduction to the Methods of Seeking, Mining, and Assaying Copper, and Manufacturing its Alloys. By Robert H. Lamborn, Ph.D. Woodcuts. 2S. 6d.;
119. METALLURGY OF SILVER AND LEAD. A Description of the Ores; their Assay and Treatment, and valuable Constituents. By Dr. R. H. Lamborn. Woodcuts. 2s. 6d. F
120. ELECTRO-METALLURGY; Practically Treated. By Alex. ANDER WATT, F.R.S.S.A. 7th Edition, revised, with important additions, including the Electro-Deposition of Nickel, \&cc. Woodcuts. 3 s.t
121. MINING TOOLS, Manual of. For the Use of Mine Managers, Agents, Students, \&c. By Wilimam Morgans. 2s. 6d.f
172*. MINING TOOLS, ATLAS of Engravings to Illustrate the above, containing 235 Illustrations, drawn to Scale. 4to. 4s. 6d.; cloth boards, 6 s .
122. METALLURGY OF IRON. Containing History of Iron Manufacture, Methods of Assay, and Analyses of Iron Ores, Processes of Manufacture of Iron and Steel, \&c. By H. Bauerman, F.G.S. \&th Edition. 4s. 6d. ${ }^{2}$
123. COAL AND COAL MINING, A Rudimentary Treatise on. By Waringron W. Smyth, M.A., F.R.S. Fifth Edition, revised and enlarged. With numerous Mllustrations. 3s. 6d. $\ddagger \quad$ [Fast published.
124. THE MINERAL SURVEYOR AND VALUER'S COMPLETE GUIDE, with new Traverse Tables, and Descriptions of Improved Instruments; also the Correct Principles of Laying out and Valuing Mineral Properties. By William Lintern, Mining and Civil Engineer. 3s. 6d.a
125. SLATE AND SLATE QUARRYING, Scientific, Practical, and Commercial. By D. C. Davies, F.G.S., Mining Engineer, \&c. With numerous Illustrations and Folding Plates. 3 s.t.
126. THE GOLDSMITHPS $H A N D B O O K$, containing full Instructions for the Alloying and Working of Gold. By George E. Gee, Goldsmith and Silversmith. Second Edition, considerably enlarged. $3 \mathrm{~s} .+\mathrm{t}$ F uist published.
127. THE SILVERSMITH'S HANDBOOK, containing full Instructions for the Alloying and Working of Silver. By George E. Gee. 3 s.t
128. MAGNETIC SURVEYING, AND ANGULAR SURVEY. ING, with Records of the Peculiarities of Needle Disturbances. Compiled from the Results of carefully made Experiments. By Wiliam Lintern, Mining and Civil Engineer and Surveyor. 2s. [Fust pubbished.

FINE ARTS.

20. PERSPECTIVE FOR BEGINNERS. Adapted to Young Students and Amateurs in Architecture, Painting, \&c. By George Pyne. 2s. 40 GLASS STAINING; or, The Art of Painting on Glass. From \& the German of Dr. Gessert. With an Appendix on The Art of Enamel-
4I. ling, \&c.; together with The Art of Painting on Glass. From the
4I. German of Emanuel Otto Fromberg. In One Volu ne. 2s. 6 d .
21. MUSIC, A Rudimentary and Practical Treatise on. With numerous Examples. By Charles Child Spencer. ${ }^{2 s} .6 \mathrm{~d}$.
7I. PIANOFORTE, The Art of Playing the. With numerous Exercises \& Lessons. From the Best Masters, by Charles Child Speneer. is. 6 d .
60-71. MUSIC AND THE PIANOFORTE. 'In one volumn. Half bound, 5 s.
22. PAINTING POPULARLY EXPLAINED, including Fresco, Oil, Mosaic, Water Colour, Water-Glass, Tempera, Encaustic, Miniature, Painting on Ivory, Vellum, Pottery, Enamel, Glass, \&c. With Historical Sketches of the Progress of the Art by Thomas John Gullick, assisted by John Trmbs, F.S.A. Fourth Edition, revised and enlarged. 5 s.
23. A GRAMMAR OF COLOURING, applied to Decorative Painting and the Arts. By Grorge Field. New Edition, enlarged and adapted to the Use of the Ornamental Painter and Designer. By Elins A. Davidson. With two new Coloured Diagrams, 解c. 3 s. .)
駢 7 The \ddagger indicates that these voi's. may be had strongly bound at 6d. extra.

AGRICULTURE, GARDENING, ETC:

29. THE DRAINAGE OF DISTRICTS AND LANDS. By G. Drysdale Dempsey, C.E. [New Edition in preparation.
30. CLA Y LANDS \mathcal{G} LOAMY SOILS. By Prof. DonALDSon. Is.
31. MILLER'S, MERCHANT'S, AND FARMER'S READY RECKONER, for ascertaining at sight the value of any quantity of Corn, from One Bushel to One Hundred Quarters, at any given price, from $£ \mathrm{I}$ to f5 per Qr. With approximate values of Millstones, Millwork, \&c. Is.
32. SOILS, MANURES, AND CROPS. (Vol. I. OUTLINES of Modern Farming.) By R. Scott Burn. Woodcuts. 2 s .
33. FARMING \&o FARMING EC'ONOMY, Notes, Historical and Practical, on. (Vol. 2.Outlines of Modern Farming.) By R. Scott Burn. 3 s.
34. STOCK; CATTLE, SHEEP, AND HORSES. (Vol. 3. Outlines of Modern Farming.) By R. Scott Burn. Woodcuts. 2s. 6 d .
35. DAIR Y, PIGS, AND POULTRY, Management of the. By R. Scott Burn. With Notes on the Diseases of Stock. (Vol. 4. Outlines of Modern Farming.) Woodcuts. 2 s.
36. UTILIZATION OF SEWAGE, IRRIGATION, AND reclamation of Waste Land. (Vol. 5. Outlines of Modern Farming.) By R. Scott Burn. Woodcuts. 2s. 6 d .
${ }^{*} *$ Nos. r $40-\mathrm{I}-2-5-6$, in One Vol., handsomely half-bound, entitled "Outlines or Modern Farming." By Robert Scott Burn. Price i2s.
37. FRUIT TREES, The Scientific and Profitable Culture of. From the French of Du Breuil. Revised by Geo. Glenny. i87 Woodcuts. 3s. 6d. \ddagger
38. SHEEP; THE HISTORY, STRUCTUP $5, ~ E C O N O M Y, ~ A N D ~$ DISEASES OF. By W. C. Spooner, M.R.V.c., \&c. Fourth Edition, considerably enlarged; with numerous fine engravings, including some specimens of New and Improved Breeds. 366 pp . 3 s . 6 d . \ddagger
39. KITCHEN GARDENING MADE EASY. Showing how to prepare and lay out the ground, the best means of cultivating every known Vegetable and Herb, with cultural directions for the management of them all the year round. By George M.F.Glen xy, A uthor of "Floriculture," $\$ c$. is.6d. \ddagger
40. OUTLINES OF FARM MANAGEMENT, and the Organization of Farm Labour: Treating of the General Work of the Farm; Field and Live Stock; Details of Contract Work; Specialities of Labour; Economical Management of the Farmlouse and Cottage, and their Domestic Animals. By Robert Scott Burn. 2s. 6d.ғ
[7ust published.
41. OUTLINES OF LANDED ESTATES MANAGEMENT: Treating of the Varieties of Lands, Methods of Farming, Farm Buildings, Irrigation, Drainage, \&c. By R. Scott Burn. 2s. 6d. \ddagger
**** Nos. 207 © $\mathbf{E} 208$ in One Vol., handsomely half-bound, entitled "Outtines of Landed Estates and Farm Management." By R. Scott Burn. Price 6 s.
20G. THE TREE PLANTER AND PLANT PROPAGATOR: Being a Practical Manual on the Propagation of Forest Trees, Fruit Trees, Flowering Shrubs, Flowering Plants, Pot-Herbs, \&c.; with numerous Illustrations of Grafting, Layering, Budding, Cuttings, \&c., Useful Implements, Houses, Pits, \&c. By Samuel Wood. 2s. \ddagger [Fust published.
42. THE TREE PRUNER: Being a Practical Manual on the Pruning of Fruit Trees, including also their Training and Renovation ; also treating of the Pruning of Shrubs, Climbers and Flowering Plants. By Samuel Wood. 2s. \ddagger [F7ust published.
*** Nos. 209 Ev 2 ro in One Vol., handsomely half-bound, entitled " The Tree. Planter, Propagator and Pruner." By Sanuel Wood. Price 5 s.
43. THE HAY AND STRAW MEASURER : Being New Tables for the Use of Auctioneers, Valuers, Farmers, Hay and Straw Dealers, \&c., forming a complete Calculator and Ready-Reckoner, especially adapted to, persons connected with Agriculture. Third Edition. By John Steele. 2 s.
44. SUBURBAN FARMING. The Laying-out and Cultivation of Farms, adapted to the Produce of Milk, Butter, and Cheese, Eggs, Poultry ${ }_{2}$ and Pigs. Hy the late Prof. John Donaldson. With Additions by R. Scotr Burn. Second Edition. 3s. 6d.t [F7ust published.

7, STATIONERS' HaLL COURT, LUDGATE HILL, E.C.

ARITHMETIC, GEOMETRY, MATHEMATICS, ETC.

32. MATHEMATICAL INSTRUMENTS, a Treatise on; in which their Construction and the Methods of Testing, Adjusting, and Using them are concisely Explained. By J. F. Heather, M.A., of the Royal Military Academy, Woolwich. Original Edition, in I vol., Illustrated. Is. 6d.
*** In ordering the above, be careful to say, "Original Edition" (No. 32), to distinguish it from the Enlarged Edition in 3 vols. (Nos. 168-9-70.)
33. LAND AND ENGINEERING SURVEYING, a Treatise on; with all the Modern Improvements. Arranged for the Use of Schools and Private Students ; also for Practical Land Surveyors and Engineers. By t. Baiker, C.E. New Edition, revised by Edward Nugen', C.E. Illustrated with Plates and Diagrams. 2s. \ddagger
6.*. READY RECKONER FOR THE ADMEASUREMENT OF Land. By Abraham Arman, Schoolmaster, Thurleigh, Beds. To which is added a Table, showing the Price of Work, from 2s. 6d. to $£$ I per acre, and Tables for the Valuation of Land, from is. to $£_{\mathrm{I}, 000 \text { per acre, and from one }}$ pole to two thousand acres in extent, \&c., \&c. Is. 6d.
34. DESCRIPTIVE GEOMETRY, an Elementary Treatise on; with a Theory of Shadows and of Perspective, extracted from the French of G. Monge: To which is added, a description of the Principles and Practice of Isometrical Projection; the whole being intended as an introduction to the Application of Descriptive Geometry to various branches of the Arts. By J. F. Heather, M.A. Illustrated with 14 Plates. 2 s.

1'8. PRACTICAL PLANE GEOMETRY: giving the Simplest Modes of Constructing Figures contained in one Plane and Geometrical Construction of the Ground. By J. F. Heather, M.A. With 215 Woodcuts. 25.
179. PROFECTION: Orthographic, Topographic, and Perspective: giving the various Modes of Delineating Solid Forms by Constructions on a Single Plane Surface. By J. F. Heather, M.A. [In preparation.
*** The above three volumes woill form a Complete Elementary Course of Mathematical Drawing.
83. COMMERCIAL BOOK-KEEPING. With Commercial Phrases and Forms in English, French, Italian, and German. By James Haddon, M.A., Arithmetical Master of King's College School, London. is. 6d.
84. ARITHMETIC, a Rudimentary Treatise on: with full Explanations of its Theoretical Principles, and numerous Examples for Practicr. For the Use of Schools and for Seif-Instruction. By J.R. Young, late Professor of Mathematics in Belfast College. New Edition, with Index. is. 6 d .
84* A Key to the above, containing Solutions in full to the Exercises, together with Comments, Explanations, and Iniproved Processes, for the Use of Teachers and Unassisted Learners. By J. R. Young. Is. 6 d .
85. EQUATIONAL ARITHMETIC, applied to Questions of Interest,

85*. Annuities, Life Assurance, and General Commerce; with various Tables by which all' Calculations may be greatly facilitated. By W. Hipsley. 2 s .
86. $A L G E B R A$, the Elements of. By James HadDon, M.A., Second Mathematical Master of King's College School. With Appendix, containing miscellaneous Investigations, and a Collection of Problems in various parts of Algebra. 2 s .
86*. A KEy and Companion to the above Book, forming an extensive repository of Solved Examples and Problems in Illustration of the various Expedients necessary in Algebraical Operations. Especially adapted for Self-Instruction. By J. R. Young. rs. 6 d .
88. EUCLID, The Elements of: with many additional Propositions
89. and Explanatory Notes: to which is prefixed, an Introductory Essay on Logic. By Henry Law, C.E. 2s. 6d.末
*** Sold also separately, viz. :-
88. Euclid, The First Three Books. By Henry Law, C.E. is. 6d.
89. Euclid, Books 4, 5, 6, if, 12. By Henry Law, C.E. is. 6d.
(12웅 The \pm indicates that these vols. may be had strongly hound at $6 d$. extra.
LONDON: CROSBY LOCKWOOOD AND CO.,

Arithmetic, Geometry, Mathematics, etc., continued.
90. ANALYTICAL GEOMETRY AND -CONIC SECTIONS, a Rudimentary Treatise on. By James Hann, late Mathematical Master of King's College School, London. A New Edition, re-written and enlarged by J. R. Young, formerly Professor of Mathematics at Belfast College. 2s. \ddagger
91. PLANE TRIGONOMETRY, the Elements of. By James Hann, formerly Mathematical Master of King's College, London. is. 6d.
92. SPHERICAL TRIGONOMETRY, the Elements of. By James Hann. Revised by Charles H. Dowling, C.E., is.
*** Or with " The Elements of Plane Trigonometry"," in One Volume, 2s. 6d.
93. MENSURATION AND MEASURING, for Students and Practical Use. With the Mensuration and Levelling of Land for the Purposes of Modern Engineering. By T. Baker, C.E. New Edition, with Corrections and Additions by E. Nugent, C.E. Illustrated. is. 6 d .
102. INTEGRAL CALCULUS, Rudimentary Treatise on the. By Homersham Cox, B.A. Illustrated. is.
103. INTEGRAL CALCULUS, Examples on the. By James Hann, late of King's College, London. Illustrated. is.
101. DIFFERENTIAL CALCIILUS, Elements of the. By W. S. B. Woolhouse, F.R.A.S., \&c. is. 6d.
105. MNEMONICAL LESSONS. - Geometry, Algebra, and Trigonometry, in Easy Mnemonical Lessons. By the Rev. Thomas Penyngton Kirimay, M.A. is. 6 d .
136. ARITHMETIC, Rudimentary, for the Use of Schools and SelfInstruction. By James Haddon, M.A. Revised by Abraham Arman. Is. 6 d .
137. A Kex to Haddon's Rudimentary Arithmetic. By A. Arman. is. 6d.
108. DRAWING AND MEASURING INSTRUMENTS. Includ-ing-I. Instruments employed in Geometrical and Mechanical Drawing, and in the Construction, Copying, and Measurement of Maps and Plans. II. Instruments used for the purposes of Accurate Measurement, and for Arithmetical Computations. By J. F. Heather, M.A., late of the Royal Military Academy, Woolwich, Author of "Descriptive Geometry," \&c., \&cc. Illustrated. Is. 6 d .
169. OPTICAL INSTR UMENTS. Including (more especially) Telescopes, Microscopes, and Apparatus for producing copies of Maps and Plans by Photography. By J. F. Heather, M.A. Illustrated. is. 6 d .
ェク. SURVEYING AND ASTRONOMICAL INSTRUMENTS. Including-I. Instruments Used for Determining the Geometrical Features of a portion of Ground. II. Instruments Employed in Astronomical Observations. By T. F. Heather, M.A. Illustrated. is. 6d.
** The above three volumes form an enlargement of the Author's original woork, "Mathematical Instruments: their Construction, Adjustment, Testing, and Use," the Thirteenth Edition of which is on sale, price Is. $6 d$. . (See No. 32 in the Series.)
168.) MATHEMATICAL INSTRUMENTS. By J. F. Heather, 169. . M.A. Enlarged Edition, for the most part entirely re-written. The 3 Parts as 170. above, in One thick Volume. With numerous Illustrations. 4s. 6d. \ddagger
158. THE SLIDE RULE, AND HOW TO USE IT; containing full, easy, and simple Instructions to perform all Business Calculations with unexampled rapidity and accuracy. By Charles Hoare, C.E. With a Slide Rule in tuck of cover. $2 \mathrm{~s} .6 \mathrm{~d} . \ddagger$
185. THE COMPLETE MEASURER; setting forth the Measurement of Boards, Glass, \&c., \&c.; Unequal-sided, Square-sided, Octagonahsided, Round Timber and Stone, and Standing Timber. With a Table showing the solidity of hewn or eight-sided timber, or of any octagonalsided column. Compiled for Timber-growers, Merchants, and Surveyors, Stonemasons, Architects, and others. By Richard Horton. Third Edition, with valuable additions. 4s.; strongly bound in leather, 5 s.
196. THEORY OF COMPOUND INTEREST AND ANNUT. TIES; with Tables of Logarithms for the more Difficult Computations of Interest, Discount, Annuities, \&c. By FÉdor Thoman. 4s. \ddagger
120 The \ddagger indicates that these vols. may be had strongly bound at 6d. extra,
7, STATIONERS' HALI. COURT, LUDGATE HILL: E.C.

[^21]
MISCELLANEOUS VOLUMES:

36. A DICTIONARY OF TERMS used in ARCHITECTURE, BUILDING, ENGINEERING, MINING, METALLURGY, ARCHIEology, the FINE ARTS, Evc. By John Weale. Fifth Edition. Revised by Robert Hunt, F.R.S., Keeper of Mining Records. Numerous Illustrations. 5s. cloth limp; 6s. cloth boards.
37. THE LAW OF CONTRACTS FOR WORKS AND SER. VICES. By Davin Gibbons. Third Edition, enlarged. 3s. \ddagger
38. MANUAL OF DOMESTIC MEDICINE. By R. Gooding, B.A., M.D. Intended as a Family Guide in all Cases of Accident and Emergency. 2s. \ddagger
112*. MANAGEMENT OF HEALTH. A Manual of Home and Personal Hygiene. By the Rev. James Baird, B.a. is.
39. LOGIC, Pure and Applied. By S. H. Emmens. Is. 6d.
40. PRACTICAL HINTS FOR INVESTING MONEY. With an Explanation of the Mode of Transacting Business on the Stock Exchange. By Francis Playford, Sworn Broker. is. dd.
41. SELECTIONS FROM LOCKE'S ESSAYS ON THE HUMAN UNDERSTANDING. With Notes by S. H. Emmens. 2s.
42. GENERAL HINTS TO EMIGRANTS. Containing Notices of the various Fields for Emigration. With Hints on Preparation for Emigrating, Outfits, \&c., \&c. With Directions and Recipes useful to the Emigrant. With a Map of the World. ${ }^{2 s}$.
43. THE EMIGRANT'S GUIDE TO NATAL. By Robert James Mann, F.R.A.S., F.M.S. Second Edition, carefully correcteri to the present Date. Map. 2 s .
44. HANDBOOK OF FIELD FORTIFICATION, intended for the Guidance of Officers Preparing for Promotion, and especially adapted to the requirements of Beginners. By Major W. W. KNOLLYS, F.R.G.S., 93 rd Sutherland Highlanders, \&c. With 163 Woodcuts. 3 s. $\%$
45. THE HOUSE MANAGER: Being a Guide to Housekeeping. Practical Cookery, Pickling and Preserving, Household Work, Dairy Management, the Table and Dessert, Cellarage of Wines, Home-brewing and Wine-making, the Boudoir and Dressing-room, Travelling, Stable Economy, Gardening Operations, \&c. By An Old Housekeeper. $3 \mathrm{~s} .6 \mathrm{~d} . \neq$
46. HoUSE BOOK (The). Cumprising:-I. The House Manager.
47. By an Old Housekeeper. II. Dombstic Medicine. By Ralph Gooding,
\& M.D. III. Management of Healith. By James Baird. In One Vol., 112** strongly half-bound. 6 s.
48. COACH BUILDING, A Practical Treatise, Historical and Descriptive, containing full information of the various Trades and Processes involved, with Hints on the proper Keeping of Carriages, \&c. With 57 Illustrations. Ry Janns W. Burgess. 2s. bd.t [Fust published.
駼 The \ddagger indicates that these vols. may be had strongly bound at 6d. extra.

EDUCATIONAL AND CLASSICAL SERIES.

HISTORY.

1. England, Outlines of the History of; more especially with reference to the Origin and Progress of the English Constitution. By William Douglas Hamilton, F.S.A., of Her Majesty's Public Record Office. 4th Edition, revised. 5 s .; cloth boards, 6 s .
2. Greece, Outlines of the History of, in connection with the Rise of the Arts and Civilization in Europe. By W. Douglas Hamilton, of University College, London, and Edward Levien, M.A., of Balliol College, Oxford. 2s. 6d. ; cloth boards, 3 s . 6d.
3. Rome, Outlines of the History of: from the Earliest Period to the Christian Era and the Commencement of the Decline of the Empire. By Edward Levien, of Balliol College, Oxford. Map, 2s. 6d.; cl. bds. 3s.6d.
4. Chronology of History, Art, Literature, and Progress ${ }_{5}$ from the Creation of the World to the Conclusion of the Franco-German War. The Continuation by W. D. Hamilton, F.S.A. 3 s . ; cloth boards, 3 s .6 d .
5. Dates and Events in English History for the use of Candidates in Public and Private Examinations. By the Rev. E. Rand. is.

ENGLISH LANGUAGE AND MISCELLANEOUS.
11. Grammar of the English Tongues Spoken and Written. With an Introduction to the Study of Comparative Philology. By Hyde Clarke, D.C.L. Fourth Edition. Is. 6d.
11*. Philology: Handbook of the Comparative Philology of English, Anglo-Saxon, Frisian, Flemish or Dutch, Low or Platt Dutch, High Dutch or German, Danish, Swedish, Icelandic, Latin, Italian, French, Spanish, and Portuguese Tongues. By Hyde Clarke, D.C.L. is.
12. Dictionary of the English Language, as Spoken and Written. Containing above ioo,ooo Words. By Hyde Clarke, D.C.I. 3s. 6 d. ; cloth boards, 4 s .6 d .; complete with the Grammar, cloth bds., 5 s .6 d .
48. Composition and Punctuation, familiarly Explained for those who have neglected the Study of Grammar. By Justin Brenan. 17th Edition. is. $6 d$.
49. Derivative Spelling-Book: Giving the Origin of Every Word from the Greek, Latin, Saxon, German, Teutonic, Dutch, French, Spanish, and other Languages; with their present Acceptation and Pronunciation. By J. Rowbotham, F.R.A.S. Improved Edition. Is. 6 d .
51. The Art of Extempore Speaking: Hints for the Pulpit, the Senate, and the Bar. By M. Bautain, Vicar-General and Professor at the Sorbonne. Translated from the French. 7 th Edition, carefully corrected. 2s.6d.
52. Mining and Quarryings with the Sciences connected therewith. First Book of, for Schools. By J. H. Collins, F.G.S., Lecturer to the Miners' Association of Cornwall and Devon. is.
53. Places and Facts in Political and Physical Geography, for Candidates in Examinations. By the Rev. Edgar Rand, B.A. Is.
54. Analytical Chemistry, Qualitative and Quantitative, a Course of. To which is prefixed, a BriefTreatise upon Modern Chemical Nomenclature and Notation. By Wm. W. Pink and George E. Webster. $2 s$.
THE SGHOOL MANAGERS’ SERIES OF READING BOOKS ${ }_{3}$
Adapted to the Requirements of the New Code. Edited by the Rev. A. R. Grant, Rector of Hitcham, and Honorary Canon of Ely; formerly H.M. Inspector of Schools.
 Lessons from the Bible. Part I. Old Testament. is.
Lessons from the Bible. Part II. New Testament, to which is added The Geography of the Bible, for very young Children. By Rev. C. Thornton Forster. is. 2d. *** Or the Two Parts in One Volume. 2s.
7, Stationers' hall COURT, LUDGate hill, e.C.

FRENCH.

24. French Grammar. With Complete and Concise Rules on the Genders of French Nouns. By G. L. Strauss, Ph.D. is. 6d.
25. French-English Dictionary. Comprising a large number of New Terms used in Engineering, Mining, \&c. By Alfred Elives. is. 6 d.
26. English French Dictionary. By Alfred Elwes. 2s.

25,26. French Dictionary (as above). Complete, in One Vol., $3 \mathrm{~S}_{0}$; cloth boards, 3s. 6d. *** Or with the Grammar, cloth boards, 4s. 6d.
47. French and English Phrase Book: containing Introductory Lessons, with Translations, several Vocabularies of Words, a Collection of suitable Phrases, and Easy Familiar Dialogues. is. 6d.

GERMAN.

39. German Grammar. Adapted for English Students, from Heyse's Theoretical and Practical Grammar, by Dr. G. L. Sirauss. is.
40. German Reader: A Series of Extracts, carefully culled from the most approved Authors of Germany; with Notes, Philological and Explanatory. By G. L. Strauss, Ph.D. is.
41-4.3. German Triglot Dictionary. By Nicholas Esterhazy S. A. Hamiton. In Three Parts. Part I. German-French-English. Part II. English-German-French. Part III. French-German-English. 3s., or cloth boards, 4 s .
4I-43 German Triglot Dictionary (as above), together with German
\& 39. Grammar (No. 39), in One Volume, cloth boards, 5 s.
ITALIAN.
41. Italian Grammar, arranged in Twenty Lessons, with a Course of Exercises. By Alfred Eliwes. is. 6d.
42. Italian Triglot Dictionary, wherein the Genders of all the Italian and French Nouns are carefully noted down. By Alfred Elwes. Vol. I. Italian-English-French. 2s. 6d.
43. Italian Triglot Dictionary. By A. Elwes. Vol. 2. English-French-Italian. ${ }^{2 s}$. 6d.
44. Italian Triglot Dictionary. By Alfred Elwes. Vol. 3. French-Italian-English. 2s. 6d.
28,30, Italian Triglot Dictionary (as above). In One Vol., 7s. 6d.
45. Cloth boards.

SPANISH AND PORTUGUESE:

34. Spanish Grammar, in a Simple and Practical Form. With a Course of Exercises. By Alfred Elwes. is. 6d.
35. Spanish-English and English-Spanish Dictionary. Including a large number of Technical Terms used in Mining, Engineering, \&c., with the proper Accents and the Gender of every Noun. By Alfred ELwes. 4s.; cloth boards, 5s. ${ }^{*} *^{*}$ Or with the Grammar, cloth boards, 6s.
36. Portuguese Grammar, in a Simple and Practical Form. With a Course of Exercises. By Alfred Elwes. is. 6 d .
37. Portuguese-English and English-Portuguese Dictionary, with the Geriders of each Noun. By Alfred Elwes.
[he preparation.

HEBREW.

${ }^{4} 6$. Hebrew Grammar. By Dr. Bresslau. Is. 6d.
44. Hebrew and English Dictionary, Biblical and Rabbinical; containing the Hebrew and Chaldee Roots of the Old Testament PostRabbinical Writings. By Dr. Bresslau. 6 s.
46. English and Hebrew Dictionary. By Dr. Bresslau. 3s.

44,46 . Hebrevy Dictionary (as above), in Two Vols., complete, with 46*. the Grammar, cloth boards, i2s.

LATIN.

19. Latin Grammar. Containing the Inflections and Elementary Principles of Translation and Construction. By the Rev. Thomas Goodwin, M.A., Head Master of the Greenwich Proprietary School. is.
20. Latin-English Dictionary. By the Rev. Thomas Goodwin, M.A. ${ }^{2 s}$.
21. English-Latin Dictionary; together with an Appendix of French and Italian Words which have their origin from the Latin. By the Rev. Thomas Goodwin, M.A. is. 6d.
20,22. Latin Dictionary (as above). Complete in One Vol., 3s. 6d.; cloth boards, 4s. 6d. *** Or with the Grammar, cloth boards, 5s. 6d.
LATIN CLASSICS. With Explanatory Notes in English.
I. Latin Delectus. Containing Extracts from Classical Authors, with Genealogical Vocabularies and Explanatory Notes, by H. Young. is. 6 d .
22. Cæsaris Commentarii de Bello Gallico. Notes, and a Geographical Register for the Use of Schools, by H. Young. $2 s$.
23. Cornelius Nepos. With Notes. By H. Young. Is.
24. Virgilii Maronis Bucolica et Georgica. With Notes on the Bucolics by W. Rushton, M.A., and on the Georgics by H. Young. is. 6d.
25. Virgilii Maronis Æneis. With Notes, Critical and Explanatory, by H. Young. New Edition, revised and improved. With copious Additional Notes by Rev. T. H. L. Leary, D.C.L., formerly Scholar of Brasenose College, Oxford. 3 s.
$5_{5 *}^{5^{*}}$ ——— Part \mathbf{I}. Books i.-vi., 1 Is . 6d.
26. Horace; Odes, Epode, and Carmen Sæculare. Notes by H. Young. is. 6d.
27. Horace; Satires, Epistles, and Ars Poetica. Notes by W. Brownrigg Smith, M.A., F.R.G.S. is. 6d.
28. Sallustii Crispi Catalina et Bellum Jugurthinum. Notes, Critical and Explanatory, by W. M. Donne, B.A., Trin. Coll., Cam. rs. 6d.
29. Terentii Andria et Heautontimorumenos. With Notes, Critical and Explanatory, by the Rev. James Davies, M.A. is. 6d.
30. Terentii Adelphi, Hecyra, Phormio. Edited, with Notes, Critical and Explanatory, by the Rev. James Davies, M.A. $2 s$.
if. Terentii Eunuchus, Comœdia. Notes, by Rev. J. Davies, M.A. rs. 6d.
31. Ciceronis Oratio pro Sexto Roscio Amerino. Edited, with an Introduction, Analysis, and Notes, Explanatory and Critical, by the Rev. James Davies, M.A. is.
32. Ciceronis Orationes in Catilinam, Verrem, et pro Archia. With Introduction, Analysis, and Notes, Explanatory and Critical, by Rev. T. H. L. Leary, D.C.L. formerly Scholar of Brasenose College, Oxford. is. 6 d .
33. Ciceronis Cato Major, Lælius, Brutus, sive de Senectute, de Amicitia, de Claris Oratoribus Dialogi. With Notes by W. Brownrigg Smith, M.A., F.R.G.S. 2 s .
34. Livy: History of Rome. Notes by H. Young and W. B. Smith, M.A. Part i. Books i., ii., rs. 6d.

16*. —— Part 2. Books iii., iv., v., rs. 6d.
17. - Part 3. Books xxi., xxii., rs. 6d.
19. Latin Verse Selections from Catullus, Tibullus, Propertius, and Ovid. Notes by W. B. Donne, M.A., Trinity College, Cambridge. 2s.
20. Latin Prose Selections, from Varro, Columella, Vitruvius, Seneca, Quintilian, Florus, Velleius Paterculus, Valerius Maximus Suetonius, Apuleius, \&c. Notes by W. B. Donne, M.A. 2 s.
21. Juvenalis Satiræ. With Prolegomena and Notes by T. H. S. Escott, B.A., Lecturer on Logic at King's College, London. 2 s .

GREEK.

14. Greek Grammar, in accordance with the Principles and Philological Researches of the most eminent Scholars of our own day. By Hans Claude Hamilton. is. 6d.
-15,17. Greek Lexicon. Containing all the Words in General Use, with their Significations, Inflections, and Doubtful Quantities. By Henry R. Hamilton. Vol. r. Greek-English, 2s. 6d.; Vol. 2. English-Greek, 2s. Or the Two Vols. in One, 4s. 6d.: cloth boards, 5 s.
14,15. Greek Lexicon (as above). Complete, with the Grammar, in
15. One Volo, cloth boards, 6 s.

GREEK CLASSICS. With Explanatory Notes in English.
I. Greek Delectus. Containing Extracts from Classical Authors, with Genealogical Vocabularies and Explanatory Notes, by H. Young. New Edition, with an improved and enlarged Supplementary Vocabulary, by Јонл Hutchison, M.A., of the High School, Glasgow. is. 6d.
2, 3. Xenophon's Anabasis ${ }^{\text {y }}$ or, The Retreat of the Ten Thousand. Notes and a Geographical Register, by H. Young. Part i. Books i. to iii., rs. Part 2. Books iv. to vii., is.
4. Lucian's Select Dialogues, The Text carefully revised, with Grammatical and Explanatory Notes, by H. Young. is. 6d.
5-12. Homer, The Works of. According to the Text of Baedmlein. With Notes, Critical and Explanatory, drawn from the best and latest Authorities, with Preliminary Observations and Appendices, by T. H. L. Leary, M.A., D.C.L.
The Iliad: Part I. Books i. to vi., is. 6d.
Part 2. Books vii. to xii., rs.6d.
The Odyssey: Part i. Books i. to vi., is. 6 d
Part 2. Books vii. to xii., rs. 6d.
Part 3. Books xiii, to xviii., rs. 6d. Part 4. Books xix. to xxiv., is. 6d. Part 3. Books xiii. to xviii., Is. 6 d . Part 4. Books xix. to xxiv., and Hymns, 2 s .
13. Plato's Dialogues: The Apology of Socrates, he Crito, and the Phædo. From the Text of C. F. Hermann. Edited witi. Notes, Critical and Explanatory, by the Rev. James Davies, M.A. 2 s .
E4-17. Herodotus, The History of, chiefly after the Text of Gaisford. With Preliminary Ohservations and Appendices, and Notes, Critical and Explanatory, by T. H. I. Leary, M.A., D.C.L.

Part r. Books i., ii. (The Clio and Euterpe), 2 s.
Part 2. Books iii., iv. (The Thalia and Melpomene), 2s.
Part 3. Books v.--vii. (The Terpsichore, Erato, and Polymnia), 2 s.
Part 4. Books viii., ix. (The Urania and Calliope) and Index, 1 ms .6 d .
18. Sophocles: Gdipus Tyrannus. Notes by H. Young. is.
20. Sophocles: Antigone. From the Text of Dindorf. Notes, Critical and Explanatory, by the Rev. John Milner, B.A. ${ }^{2 s}$.
23. Euripides : Hecuba and Medea. Chiefly from the Text of Dindorf. With Notes, Critical and Explanatory, by W. Brownrigg Smith, M.A., F.R.G.S. Is. 6d.
26. Euripides: Alcestis. Chiefly from the Text of Dindorf. With Notes, Critical and Explanatory, by John Milner, B.A. is. 6d.
30. Fschylus: Prometheus Vinctus: The Prometheus Bound. From the Text of Dindorf. Edited, with English Notes, Critical and Explanatory, by the Rev. James Davies, M.A. is.
32. AEschylus: Septem Contra Thebes: The Seven against Thebeso From the Text of Dindorf. Edited, with English Notes, Critical and Explanatory, by the Rev. James Davies, M.A. is.
40. Aristophanes: Acharnians. Chiefly from the Text of C. H. Weise. With Notes, by C. S. T. Townshend, M.A. is. 6d.
41. Thucydides: History of the Peloponnesian War. Notes by H. Young. Book r. is.
42. Xenophon"s Panegyric on Agesilaus. Notes and Introduction by Le. F. W. Jewitr. is. 6d.
43. Demosthenes, The Oration on the Crown and the Philippics. With English Notes. By Rev. T. H. L. Leary, D.C.L., formerly Scholar of Brasenose College, Oxford. is. 6d.
CROSBY LOCKWOOD AND CO., 7, STATIONERS' HALL COURT, E.C.

[^0]: ${ }^{1}$ It is an unfortunate and irrational English mode of expression to

[^1]: ${ }^{1}$ Exemplified at present in China.

[^2]: ${ }^{1}$ The pu is also a fathom.
 2 The passo di Napoli is also a pertica.

[^3]: ${ }^{1}$ In Holland, vierendeel, or quarter.

[^4]: ${ }^{1}$ Square Measures are not generally used.

[^5]: ${ }^{1}$ These quantities are nearly $\frac{3}{10}$ per cent. less than the legal capacities.

[^6]: ${ }^{1}$ The Russian pound (funt) is divided in a perfect binary scale into 96 sol, or 9216 dola; its value in English is 6319.81 grains.

[^7]: ${ }^{1}$ At these places 20 vierteln $=1$ ahm.

[^8]: ${ }^{1}$ For other barrels of dry merchandise see text, pp. 156 and 157.

[^9]: ${ }^{2}$ For other barrels of dry merchandise see text, pp. 156 and 157.

[^10]: ${ }^{2}$ Monetary pounds were used for some purposes in retail trade.

[^11]: ${ }^{1}$ This measure, known as the loth, and used all over Germany, Austria, and Switzerland, also in Holland as the lood, in Sweden, Denmark, and Norway as the lod, and in Russia and Poland as the loth and lutow, seems to be absent in England only, where it would be termed lode.

[^12]: ${ }^{1}$ The notion of sanctity attached to the number seven is an ancient Jewish relic that was condemned with sabbatariarism more than eighteen centuries ago.

[^13]: ${ }^{1}$ Professor Piazzi Smyth's remark on this subject is: 'Your conclusions and methods are strictly rational, but do not enter into the religious . history of man,' \&c.-February 20, 1877.

 The following is the opinion of the late Warden of the Standards : ' There can be no question of the greater convenience of our Weights and Measures over those of the Metric System for the practical purposes of weighing and measuring ; the units have been adopted as the most convenient, and our system is far better than the metric system; but for purposes of account it is inferior to it,' \&c.-August $\mathbf{2 6 , 1 8 7 8 .}$

[^14]: ${ }^{1}$ In the period following the utter decadence of everything that was Roman, the knowledge of Latin of the higher type was alone thoroughly preserved in Cumbria, whence, at the special request of Charlemagne, Alcuin sent instructors to him for purposes of education. The ecclesiastical Latin of Rome was certainly continuously retained through the Church formularies as regards pronunciation, but probably accompanied with very contracted notions of meaning, and but little linguistic knowledge. The subsequent foundation of universities and colleges all over Europe, apparently with the sole object of reviving Latinity and theologic lore, supports this view.

 In the Cymric ante-Roman period, Britain was the most highly civilised Western nation, to which young Gallic nobles were sent for education. France has never been pre-eminent in real civilisation, or deserving of imitation in matters of high importance.

[^15]: 1. For the decimal units see Scientific Systems in a N.B. The exact correspondence between capacity
[^16]: Measure and Weight, see pp. 119, 122, 141-143.
 see tables in Chapter VI., Part II.

[^17]: ${ }^{1}$ Treating it as a permissive system for technical purposes.

[^18]: "Contains a mass of information of use to the amateur and of value to the practical

[^19]: Dr. Lardner's Handbook of Animal Physics. THE HANDBOOK OF ANIMAL PHYSICS. By Dr. Lardner. With 520 Illustrations. New edition, small 8vo, cloth, 732 pages, 7 s . 6 d .

 - We have no hesitation in cordially recommending it."-Educutional Times.

[^20]: Popular Work on Painting.
 PAINTING POPULARLY EXPLAINED; with Historical Sketches of the Progress of the Art. By Thomas John Gullick, Painter, and John Timbs, F.S.A. Fourth Edition, revised and enlarged. With Frontispiece and Vignette. In small 8vo, $6 s$. cloth. ** This Work has been adopted as a Prize-book in the Schools of Art at South Kensington.
 "Contans a laige amount of original matter, agreeably conveyed."-Builder.
 " Much may be learned, even by those who fancy they do not require to be taught, from the careful perusal of this unpretending but comprehensive treatise."-Art fournal.

[^21]: Arithmetic, Geometry, Mathematics, etc., continued.
 199. INTUITIVE CALCULATIONS; or, Easy and Compendious Methods of Performing the various Arithmetical Operations required in Commercial and Business Transactions; together with f ull Explanations of Decimals and Duodecimals, several Useful Tables, \&c. By Daniel O'Gorman. Twenty-fifth Edition, corrected and enlarged by J. R. Young, formerly Professor of Mathematics in Belfast College. 3 s . \ddagger
 204. MATHEMATICAL TABLES, for Trigonometrical, Astronomical, and Nautical Calculations; to which is prefixed a Treatise on Logarithms. By Henry Law, C.E. Together with a Series of Tables for Navigation and Nautical Astronomy. By J. R. Young, formerly Professor of Mathematics in Belfast College. New Edition. 3s. 6d. \ddagger
 221. MEASURES, WEIGHTS, AND MONEYS OF ALL NA. TIONS, and an Analysis of the Christian, Hebrew, and Mahometan Calendars. By W. S. B. Woolhouse, F.R.A.S., F.S.S. Sixth Edition, carefully revised and enlarged. 2 s . \ddagger
 [Fust published.

